import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddlers as pdrs from paddlers import transforms as T # 下载和解压多光谱地块分类数据集 dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip' pdrs.utils.download_and_decompress(dataset, path='./data') # 定义训练和验证时的transforms channel = 10 train_transforms = T.Compose([ T.Resize(target_size=512), T.RandomHorizontalFlip(), T.Normalize( mean=[0.5] * channel, std=[0.5] * channel), ]) eval_transforms = T.Compose([ T.Resize(target_size=512), T.Normalize( mean=[0.5] * channel, std=[0.5] * channel), ]) # 定义训练和验证所用的数据集 train_dataset = pdrs.datasets.SegDataset( data_dir='./data/remote_sensing_seg', file_list='./data/remote_sensing_seg/train.txt', label_list='./data/remote_sensing_seg/labels.txt', transforms=train_transforms, num_workers=0, shuffle=True) eval_dataset = pdrs.datasets.SegDataset( data_dir='./data/remote_sensing_seg', file_list='./data/remote_sensing_seg/val.txt', label_list='./data/remote_sensing_seg/labels.txt', transforms=eval_transforms, num_workers=0, shuffle=False) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标 num_classes = len(train_dataset.labels) model = pdrs.tasks.UNet(input_channel=channel, num_classes=num_classes) model.train( num_epochs=20, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, learning_rate=0.01, save_dir='output/unet', use_vdl=True)