import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddlers as pdrs from paddlers import transforms as T # 下载和解压视盘分割数据集 optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz' pdrs.utils.download_and_decompress(optic_dataset, path='./') # 定义训练和验证时的transforms # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/transforms/transforms.md train_transforms = T.Compose([ T.Resize(target_size=512), T.RandomHorizontalFlip(), T.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) eval_transforms = T.Compose([ T.Resize(target_size=512), T.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/datasets.md train_dataset = pdrs.datasets.SegDataset( data_dir='optic_disc_seg', file_list='optic_disc_seg/train_list.txt', label_list='optic_disc_seg/labels.txt', transforms=train_transforms, num_workers=0, shuffle=True) eval_dataset = pdrs.datasets.SegDataset( data_dir='optic_disc_seg', file_list='optic_disc_seg/val_list.txt', label_list='optic_disc_seg/labels.txt', transforms=eval_transforms, num_workers=0, shuffle=False) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/paddlers/blob/develop/docs/visualdl.md num_classes = len(train_dataset.labels) model = pdrs.tasks.FarSeg(num_classes=num_classes) # API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/models/semantic_segmentation.md # 各参数介绍与调整说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/parameters.md model.train( num_epochs=10, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, learning_rate=0.01, pretrain_weights=None, save_dir='output/farseg')