# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path as osp import re import imghdr import platform from collections import OrderedDict from functools import partial, wraps import numpy as np __all__ = ['build_input_from_file'] def norm_path(path): win_sep = "\\" other_sep = "/" if platform.system() == "Windows": path = win_sep.join(path.split(other_sep)) else: path = other_sep.join(path.split(win_sep)) return path def is_pic(im_path): valid_suffix = [ 'JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png', 'npy' ] suffix = im_path.split('.')[-1] if suffix in valid_suffix: return True im_format = imghdr.what(im_path) _, ext = osp.splitext(im_path) if im_format == 'tiff' or ext == '.img': return True return False def get_full_path(p, prefix=''): p = norm_path(p) return osp.join(prefix, p) def silent(func): def _do_nothing(*args, **kwargs): pass @wraps(func) def _wrapper(*args, **kwargs): import builtins print = builtins.print builtins.print = _do_nothing ret = func(*args, **kwargs) builtins.print = print return ret return _wrapper class ConstrSample(object): def __init__(self, prefix, label_list): super().__init__() self.prefix = prefix self.label_list_obj = self.read_label_list(label_list) self.get_full_path = partial(get_full_path, prefix=self.prefix) def read_label_list(self, label_list): if label_list is None: return None cname2cid = OrderedDict() label_id = 0 with open(label_list, 'r') as f: for line in f: cname2cid[line.strip()] = label_id label_id += 1 return cname2cid def __call__(self, *parts): raise NotImplementedError class ConstrSegSample(ConstrSample): def __call__(self, im_path, mask_path): return { 'image': self.get_full_path(im_path), 'mask': self.get_full_path(mask_path) } class ConstrCdSample(ConstrSample): def __call__(self, im1_path, im2_path, mask_path, *aux_mask_paths): sample = { 'image_t1': self.get_full_path(im1_path), 'image_t2': self.get_full_path(im2_path), 'mask': self.get_full_path(mask_path) } if len(aux_mask_paths) > 0: sample['aux_masks'] = [ self.get_full_path(p) for p in aux_mask_paths ] return sample class ConstrClasSample(ConstrSample): def __call__(self, im_path, label): return {'image': self.get_full_path(im_path), 'label': int(label)} class ConstrDetSample(ConstrSample): def __init__(self, prefix, label_list): super().__init__(prefix, label_list) self.ct = 0 def __call__(self, im_path, ann_path): im_path = self.get_full_path(im_path) ann_path = self.get_full_path(ann_path) # TODO: Precisely recognize the annotation format if ann_path.endswith('.json'): im_dir = im_path return self._parse_coco_files(im_dir, ann_path) elif ann_path.endswith('.xml'): return self._parse_voc_files(im_path, ann_path) else: raise ValueError("Cannot recognize the annotation format") def _parse_voc_files(self, im_path, ann_path): import xml.etree.ElementTree as ET cname2cid = self.label_list_obj tree = ET.parse(ann_path) # The xml file must contain id. if tree.find('id') is None: im_id = np.asarray([self.ct]) else: self.ct = int(tree.find('id').text) im_id = np.asarray([int(tree.find('id').text)]) pattern = re.compile('', re.IGNORECASE) size_tag = pattern.findall(str(ET.tostringlist(tree.getroot()))) if len(size_tag) > 0: size_tag = size_tag[0][1:-1] size_element = tree.find(size_tag) pattern = re.compile('', re.IGNORECASE) width_tag = pattern.findall(str(ET.tostringlist(size_element)))[0][ 1:-1] im_w = float(size_element.find(width_tag).text) pattern = re.compile('', re.IGNORECASE) height_tag = pattern.findall(str(ET.tostringlist(size_element)))[0][ 1:-1] im_h = float(size_element.find(height_tag).text) else: im_w = 0 im_h = 0 pattern = re.compile('', re.IGNORECASE) obj_match = pattern.findall(str(ET.tostringlist(tree.getroot()))) if len(obj_match) > 0: obj_tag = obj_match[0][1:-1] objs = tree.findall(obj_tag) else: objs = list() num_bbox, i = len(objs), 0 gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32) gt_class = np.zeros((num_bbox, 1), dtype=np.int32) gt_score = np.zeros((num_bbox, 1), dtype=np.float32) is_crowd = np.zeros((num_bbox, 1), dtype=np.int32) difficult = np.zeros((num_bbox, 1), dtype=np.int32) for obj in objs: pattern = re.compile('', re.IGNORECASE) name_tag = pattern.findall(str(ET.tostringlist(obj)))[0][1:-1] cname = obj.find(name_tag).text.strip() pattern = re.compile('', re.IGNORECASE) diff_tag = pattern.findall(str(ET.tostringlist(obj))) if len(diff_tag) == 0: _difficult = 0 else: diff_tag = diff_tag[0][1:-1] try: _difficult = int(obj.find(diff_tag).text) except Exception: _difficult = 0 pattern = re.compile('', re.IGNORECASE) box_tag = pattern.findall(str(ET.tostringlist(obj))) if len(box_tag) == 0: continue box_tag = box_tag[0][1:-1] box_element = obj.find(box_tag) pattern = re.compile('', re.IGNORECASE) xmin_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: -1] x1 = float(box_element.find(xmin_tag).text) pattern = re.compile('', re.IGNORECASE) ymin_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: -1] y1 = float(box_element.find(ymin_tag).text) pattern = re.compile('', re.IGNORECASE) xmax_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: -1] x2 = float(box_element.find(xmax_tag).text) pattern = re.compile('', re.IGNORECASE) ymax_tag = pattern.findall(str(ET.tostringlist(box_element)))[0][1: -1] y2 = float(box_element.find(ymax_tag).text) x1 = max(0, x1) y1 = max(0, y1) if im_w > 0.5 and im_h > 0.5: x2 = min(im_w - 1, x2) y2 = min(im_h - 1, y2) if not (x2 >= x1 and y2 >= y1): continue gt_bbox[i, :] = [x1, y1, x2, y2] gt_class[i, 0] = cname2cid[cname] gt_score[i, 0] = 1. is_crowd[i, 0] = 0 difficult[i, 0] = _difficult i += 1 gt_bbox = gt_bbox[:i, :] gt_class = gt_class[:i, :] gt_score = gt_score[:i, :] is_crowd = is_crowd[:i, :] difficult = difficult[:i, :] im_info = { 'im_id': im_id, 'image_shape': np.array( [im_h, im_w], dtype=np.int32) } label_info = { 'is_crowd': is_crowd, 'gt_class': gt_class, 'gt_bbox': gt_bbox, 'gt_score': gt_score, 'difficult': difficult } self.ct += 1 return {'image': im_path, ** im_info, ** label_info} @silent def _parse_coco_files(self, im_dir, ann_path): from pycocotools.coco import COCO coco = COCO(ann_path) img_ids = coco.getImgIds() img_ids.sort() samples = [] for img_id in img_ids: img_anno = coco.loadImgs([img_id])[0] im_fname = img_anno['file_name'] im_w = float(img_anno['width']) im_h = float(img_anno['height']) im_path = osp.join(im_dir, im_fname) if im_dir else im_fname im_info = { 'image': im_path, 'im_id': np.array([img_id]), 'image_shape': np.array( [im_h, im_w], dtype=np.int32) } ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False) instances = coco.loadAnns(ins_anno_ids) is_crowds = [] gt_classes = [] gt_bboxs = [] gt_scores = [] difficults = [] for inst in instances: # Check gt bbox if inst.get('ignore', False): continue if 'bbox' not in inst.keys(): continue else: if not any(np.array(inst['bbox'])): continue # Read box x1, y1, box_w, box_h = inst['bbox'] x2 = x1 + box_w y2 = y1 + box_h eps = 1e-5 if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps: inst['clean_bbox'] = [ round(float(x), 3) for x in [x1, y1, x2, y2] ] is_crowds.append([inst['iscrowd']]) gt_classes.append([inst['category_id']]) gt_bboxs.append(inst['clean_bbox']) gt_scores.append([1.]) difficults.append([0]) label_info = { 'is_crowd': np.array(is_crowds), 'gt_class': np.array(gt_classes), 'gt_bbox': np.array(gt_bboxs).astype(np.float32), 'gt_score': np.array(gt_scores).astype(np.float32), 'difficult': np.array(difficults), } samples.append({ ** im_info, ** label_info}) return samples def build_input_from_file(file_list, prefix='', task='auto', label_list=None): """ Construct a list of dictionaries from file. Each dict in the list can be used as the input to `paddlers.transforms.Transform` objects. Args: file_list (str): Path of file_list. prefix (str, optional): A nonempty `prefix` specifies the directory that stores the images and annotation files. Default: ''. task (str, optional): Supported values are 'seg', 'det', 'cd', 'clas', and 'auto'. When `task` is set to 'auto', automatically determine the task based on the input. Default: 'auto'. label_list (str | None, optional): Path of label_list. Default: None. Returns: list: List of samples. """ def _determine_task(parts): if len(parts) in (3, 5): task = 'cd' elif len(parts) == 2: if parts[1].isdigit(): task = 'clas' elif is_pic(osp.join(prefix, parts[1])): task = 'seg' else: task = 'det' else: raise RuntimeError( "Cannot automatically determine the task type. Please specify `task` manually." ) return task if task not in ('seg', 'det', 'cd', 'clas', 'auto'): raise ValueError("Invalid value of `task`") samples = [] ctor = None with open(file_list, 'r') as f: for line in f: line = line.strip() parts = line.split() if task == 'auto': task = _determine_task(parts) if ctor is None: # Select and build sample constructor ctor_class = globals()['Constr' + task.capitalize() + 'Sample'] ctor = ctor_class(prefix, label_list) sample = ctor(*parts) if isinstance(sample, list): samples.extend(sample) else: samples.append(sample) return samples