# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from .blocks import Conv1x1, BasicConv class ChannelAttention(nn.Layer): """ The channel attention module implementation based on PaddlePaddle. The original article refers to Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module" (https://arxiv.org/abs/1807.06521). Args: in_ch (int): The number of channels of the input features. ratio (int, optional): The channel reduction ratio. Default: 8. """ def __init__(self, in_ch, ratio=8): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2D(1) self.max_pool = nn.AdaptiveMaxPool2D(1) self.fc1 = Conv1x1(in_ch, in_ch // ratio, bias=False, act=True) self.fc2 = Conv1x1(in_ch // ratio, in_ch, bias=False) def forward(self, x): avg_out = self.fc2(self.fc1(self.avg_pool(x))) max_out = self.fc2(self.fc1(self.max_pool(x))) out = avg_out + max_out return F.sigmoid(out) class SpatialAttention(nn.Layer): """ The spatial attention module implementation based on PaddlePaddle. The original article refers to Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module" (https://arxiv.org/abs/1807.06521). Args: kernel_size (int, optional): The size of the convolutional kernel. Default: 7. """ def __init__(self, kernel_size=7): super().__init__() self.conv = BasicConv(2, 1, kernel_size, bias=False) def forward(self, x): avg_out = paddle.mean(x, axis=1, keepdim=True) max_out = paddle.max(x, axis=1, keepdim=True) x = paddle.concat([avg_out, max_out], axis=1) x = self.conv(x) return F.sigmoid(x) class CBAM(nn.Layer): """ The CBAM implementation based on PaddlePaddle. The original article refers to Sanghyun Woo, et al., "CBAM: Convolutional Block Attention Module" (https://arxiv.org/abs/1807.06521). Args: in_ch (int): The number of channels of the input features. ratio (int, optional): The channel reduction ratio for the channel attention module. Default: 8. kernel_size (int, optional): The size of the convolutional kernel used in the spatial attention module. Default: 7. """ def __init__(self, in_ch, ratio=8, kernel_size=7): super().__init__() self.ca = ChannelAttention(in_ch, ratio=ratio) self.sa = SpatialAttention(kernel_size=kernel_size) def forward(self, x): y = self.ca(x) * x y = self.sa(y) * y return y