# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddlers from rs_models.test_model import TestModel __all__ = ['TestFarSegModel'] class TestSegModel(TestModel): DEFAULT_HW = (512, 512) def check_output(self, output, target): self.assertIsInstance(output, list) self.check_output_equal(len(output), len(target)) for o, t in zip(output, target): o = o.numpy() self.check_output_equal(o.shape[0], t.shape[0]) self.check_output_equal(len(o.shape), 4) self.check_output_equal(o.shape[2:], t.shape[2:]) def set_inputs(self): def _gen_data(specs): for spec in specs: c = spec.get('in_channels', 3) yield self.get_randn_tensor(c) self.inputs = _gen_data(self.specs) def set_targets(self): def _gen_data(specs): for spec in specs: c = spec.get('num_classes', 2) yield [self.get_zeros_array(c)] self.targets = _gen_data(self.specs) class TestFarSegModel(TestSegModel): MODEL_CLASS = paddlers.custom_models.seg.FarSeg def set_specs(self): self.specs = [ dict(), dict(num_classes=20), dict(encoder_pretrained=False) ]