# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.nn.functional as F import sklearn.metrics as skmetrics def calculate_area(pred, label, num_classes, ignore_index=255): """ Calculate intersect, prediction and label area Args: pred (Tensor): The prediction by model. label (Tensor): The ground truth of image. num_classes (int): The unique number of target classes. ignore_index (int): Specifies a target value that is ignored. Default: 255. Returns: Tensor: The intersection area of prediction and the ground on all class. Tensor: The prediction area on all class. Tensor: The ground truth area on all class """ if len(pred.shape) == 4: pred = paddle.squeeze(pred, axis=1) if len(label.shape) == 4: label = paddle.squeeze(label, axis=1) if not pred.shape == label.shape: raise ValueError('Shape of `pred` and `label should be equal, ' 'but there are {} and {}.'.format( pred.shape, label.shape)) pred_area = [] label_area = [] intersect_area = [] mask = label != ignore_index for i in range(num_classes): pred_i = paddle.logical_and(pred == i, mask) label_i = label == i intersect_i = paddle.logical_and(pred_i, label_i) pred_area.append(paddle.sum(paddle.cast(pred_i, "int32"))) label_area.append(paddle.sum(paddle.cast(label_i, "int32"))) intersect_area.append(paddle.sum(paddle.cast(intersect_i, "int32"))) pred_area = paddle.concat(pred_area) label_area = paddle.concat(label_area) intersect_area = paddle.concat(intersect_area) return intersect_area, pred_area, label_area def auc_roc(logits, label, num_classes, ignore_index=None): """ Calculate area under the roc curve Args: logits (Tensor): The prediction by model on testset, of shape (N,C,H,W) . label (Tensor): The ground truth of image. (N,1,H,W) num_classes (int): The unique number of target classes. ignore_index (int): Specifies a target value that is ignored. Default: 255. Returns: auc_roc(float): The area under roc curve """ if ignore_index or len(np.unique(label)) > num_classes: raise RuntimeError('labels with ignore_index is not supported yet.') if len(label.shape) != 4: raise ValueError( 'The shape of label is not 4 dimension as (N, C, H, W), it is {}'. format(label.shape)) if len(logits.shape) != 4: raise ValueError( 'The shape of logits is not 4 dimension as (N, C, H, W), it is {}'. format(logits.shape)) N, C, H, W = logits.shape logits = np.transpose(logits, (1, 0, 2, 3)) logits = logits.reshape([C, N * H * W]).transpose([1, 0]) label = np.transpose(label, (1, 0, 2, 3)) label = label.reshape([1, N * H * W]).squeeze() if not logits.shape[0] == label.shape[0]: raise ValueError('length of `logit` and `label` should be equal, ' 'but they are {} and {}.'.format( logits.shape[0], label.shape[0])) if num_classes == 2: auc = skmetrics.roc_auc_score(label, logits[:, 1]) else: auc = skmetrics.roc_auc_score(label, logits, multi_class='ovr') return auc def mean_iou(intersect_area, pred_area, label_area): """ Calculate iou. Args: intersect_area (Tensor): The intersection area of prediction and ground truth on all classes. pred_area (Tensor): The prediction area on all classes. label_area (Tensor): The ground truth area on all classes. Returns: np.ndarray: iou on all classes. float: mean iou of all classes. """ intersect_area = intersect_area.numpy() pred_area = pred_area.numpy() label_area = label_area.numpy() union = pred_area + label_area - intersect_area class_iou = [] for i in range(len(intersect_area)): if union[i] == 0: iou = 0 else: iou = intersect_area[i] / union[i] class_iou.append(iou) miou = np.mean(class_iou) return np.array(class_iou), miou def dice(intersect_area, pred_area, label_area): """ Calculate DICE. Args: intersect_area (Tensor): The intersection area of prediction and ground truth on all classes. pred_area (Tensor): The prediction area on all classes. label_area (Tensor): The ground truth area on all classes. Returns: np.ndarray: DICE on all classes. float: mean DICE of all classes. """ intersect_area = intersect_area.numpy() pred_area = pred_area.numpy() label_area = label_area.numpy() union = pred_area + label_area class_dice = [] for i in range(len(intersect_area)): if union[i] == 0: dice = 0 else: dice = (2 * intersect_area[i]) / union[i] class_dice.append(dice) mdice = np.mean(class_dice) return np.array(class_dice), mdice def accuracy(intersect_area, pred_area): """ Calculate accuracy Args: intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.. pred_area (Tensor): The prediction area on all classes. Returns: np.ndarray: accuracy on all classes. float: mean accuracy. """ intersect_area = intersect_area.numpy() pred_area = pred_area.numpy() class_acc = [] for i in range(len(intersect_area)): if pred_area[i] == 0: acc = 0 else: acc = intersect_area[i] / pred_area[i] class_acc.append(acc) macc = np.sum(intersect_area) / np.sum(pred_area) return np.array(class_acc), macc def kappa(intersect_area, pred_area, label_area): """ Calculate kappa coefficient Args: intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.. pred_area (Tensor): The prediction area on all classes. label_area (Tensor): The ground truth area on all classes. Returns: float: kappa coefficient. """ intersect_area = intersect_area.numpy() pred_area = pred_area.numpy() label_area = label_area.numpy() total_area = np.sum(label_area) po = np.sum(intersect_area) / total_area pe = np.sum(pred_area * label_area) / (total_area * total_area) kappa = (po - pe) / (1 - pe) return kappa