# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import glob from paddlers.models.ppseg.datasets import Dataset from paddlers.models.ppseg.cvlibs import manager from paddlers.models.ppseg.transforms import Compose @manager.DATASETS.add_component class CocoStuff(Dataset): """ COCO-Stuff dataset `https://github.com/nightrome/cocostuff`. The folder structure is as follow: cocostuff | |--images | |--train2017 | |--val2017 | |--annotations | |--train2017 | |--val2017 Args: transforms (list): Transforms for image. dataset_root (str): Cityscapes dataset directory. mode (str): Which part of dataset to use. it is one of ('train', 'val'). Default: 'train'. edge (bool, optional): Whether to compute edge while training. Default: False """ NUM_CLASSES = 171 def __init__(self, transforms, dataset_root, mode='train', edge=False): self.dataset_root = dataset_root self.transforms = Compose(transforms) self.file_list = list() mode = mode.lower() self.mode = mode self.num_classes = self.NUM_CLASSES self.ignore_index = 255 self.edge = edge if mode not in ['train', 'val']: raise ValueError( "mode should be 'train', 'val', but got {}.".format(mode)) if self.transforms is None: raise ValueError("`transforms` is necessary, but it is None.") img_dir = os.path.join(self.dataset_root, 'images') label_dir = os.path.join(self.dataset_root, 'annotations') if self.dataset_root is None or not os.path.isdir( self.dataset_root) or not os.path.isdir( img_dir) or not os.path.isdir(label_dir): raise ValueError( "The dataset is not Found or the folder structure is nonconfoumance." ) label_files = sorted( glob.glob(os.path.join(label_dir, mode + '2017', '*.png'))) img_files = sorted( glob.glob(os.path.join(img_dir, mode + '2017', '*.jpg'))) self.file_list = [[ img_path, label_path ] for img_path, label_path in zip(img_files, label_files)]