# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from .layers import make_norm, Conv3x3, CBAM from .stanet import Backbone, Decoder class DSAMNet(nn.Layer): """ The DSAMNet implementation based on PaddlePaddle. The original article refers to Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection" (https://ieeexplore.ieee.org/document/9467555). Note that this implementation differs from the original work in two aspects: 1. We do not use multiple dilation rates in layer 4 of the ResNet backbone. 2. A classification head is used in place of the original metric learning-based head to stablize the training process. Args: in_channels (int): The number of bands of the input images. num_classes (int): The number of target classes. ca_ratio (int, optional): The channel reduction ratio for the channel attention module. Default: 8. sa_kernel (int, optional): The size of the convolutional kernel used in the spatial attention module. Default: 7. """ def __init__(self, in_channels, num_classes, ca_ratio=8, sa_kernel=7): super(DSAMNet, self).__init__() WIDTH = 64 self.backbone = Backbone( in_ch=in_channels, arch='resnet18', strides=(1, 1, 2, 2, 1)) self.decoder = Decoder(WIDTH) self.cbam1 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel) self.cbam2 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel) self.dsl2 = DSLayer(64, num_classes, 32, stride=2, output_padding=1) self.dsl3 = DSLayer(128, num_classes, 32, stride=4, output_padding=3) self.conv_out = nn.Sequential( Conv3x3( WIDTH, WIDTH, norm=True, act=True), Conv3x3(WIDTH, num_classes)) self.init_weight() def forward(self, t1, t2): f1 = self.backbone(t1) f2 = self.backbone(t2) y1 = self.decoder(f1) y2 = self.decoder(f2) y1 = self.cbam1(y1) y2 = self.cbam2(y2) out = paddle.abs(y1 - y2) out = F.interpolate( out, size=paddle.shape(t1)[2:], mode='bilinear', align_corners=True) pred = self.conv_out(out) if not self.training: return [pred] else: ds2 = self.dsl2(paddle.abs(f1[0] - f2[0])) ds3 = self.dsl3(paddle.abs(f1[1] - f2[1])) return [pred, ds2, ds3] def init_weight(self): pass class DSLayer(nn.Sequential): def __init__(self, in_ch, out_ch, itm_ch, **convd_kwargs): super(DSLayer, self).__init__( nn.Conv2DTranspose( in_ch, itm_ch, kernel_size=3, padding=1, **convd_kwargs), make_norm(itm_ch), nn.ReLU(), nn.Dropout2D(p=0.2), nn.Conv2DTranspose( itm_ch, out_ch, kernel_size=3, padding=1))