# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .operators import * from .batch_operators import BatchRandomResize, BatchRandomResizeByShort, _BatchPadding from paddlers import transforms as T def arrange_transforms(model_type, transforms, mode='train'): # 给transforms添加arrange操作 if model_type == 'segmenter': if mode == 'eval': transforms.apply_im_only = True else: transforms.apply_im_only = False arrange_transform = ArrangeSegmenter(mode) elif model_type == 'changedetector': if mode == 'eval': transforms.apply_im_only = True else: transforms.apply_im_only = False arrange_transform = ArrangeChangeDetector(mode) elif model_type == 'classifier': arrange_transform = ArrangeClassifier(mode) elif model_type == 'detector': arrange_transform = ArrangeDetector(mode) else: raise Exception("Unrecognized model type: {}".format(model_type)) transforms.arrange_outputs = arrange_transform def build_transforms(transforms_info): transforms = list() for op_info in transforms_info: op_name = list(op_info.keys())[0] op_attr = op_info[op_name] if not hasattr(T, op_name): raise Exception("There's no transform named '{}'".format(op_name)) transforms.append(getattr(T, op_name)(**op_attr)) eval_transforms = T.Compose(transforms) return eval_transforms