# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import glob from paddlers.models.ppseg.datasets import Dataset from paddlers.models.ppseg.cvlibs import manager from paddlers.models.ppseg.transforms import Compose @manager.DATASETS.add_component class Cityscapes(Dataset): """ Cityscapes dataset `https://www.cityscapes-dataset.com/`. The folder structure is as follow: cityscapes | |--leftImg8bit | |--train | |--val | |--test | |--gtFine | |--train | |--val | |--test Make sure there are **labelTrainIds.png in gtFine directory. If not, please run the conver_cityscapes.py in tools. Args: transforms (list): Transforms for image. dataset_root (str): Cityscapes dataset directory. mode (str, optional): Which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. edge (bool, optional): Whether to compute edge while training. Default: False """ NUM_CLASSES = 19 def __init__(self, transforms, dataset_root, mode='train', edge=False): self.dataset_root = dataset_root self.transforms = Compose(transforms) self.file_list = list() mode = mode.lower() self.mode = mode self.num_classes = self.NUM_CLASSES self.ignore_index = 255 self.edge = edge if mode not in ['train', 'val', 'test']: raise ValueError( "mode should be 'train', 'val' or 'test', but got {}.".format( mode)) if self.transforms is None: raise ValueError("`transforms` is necessary, but it is None.") img_dir = os.path.join(self.dataset_root, 'leftImg8bit') label_dir = os.path.join(self.dataset_root, 'gtFine') if self.dataset_root is None or not os.path.isdir( self.dataset_root) or not os.path.isdir( img_dir) or not os.path.isdir(label_dir): raise ValueError( "The dataset is not Found or the folder structure is nonconfoumance." ) label_files = sorted( glob.glob( os.path.join(label_dir, mode, '*', '*_gtFine_labelTrainIds.png'))) img_files = sorted( glob.glob(os.path.join(img_dir, mode, '*', '*_leftImg8bit.png'))) self.file_list = [ [img_path, label_path] for img_path, label_path in zip(img_files, label_files) ]