Fix seed and add statistics

own
Bobholamovic 2 years ago
parent 413d9a6606
commit e83cda7b46
  1. 2
      test_tipc/configs/cd/_base_/airchange.yaml
  2. 2
      test_tipc/configs/cd/_base_/levircd.yaml
  3. 2
      test_tipc/configs/clas/_base_/ucmerced.yaml
  4. 2
      test_tipc/configs/clas/condensenetv2/train_infer_python.txt
  5. 2
      test_tipc/configs/det/_base_/rsod.yaml
  6. 2
      test_tipc/configs/det/_base_/sarship.yaml
  7. 2
      test_tipc/configs/res/_base_/rssr.yaml
  8. 10
      test_tipc/configs/seg/_base_/rsseg.yaml
  9. 4
      test_tipc/configs/seg/bisenetv2/bisenetv2_rsseg.yaml
  10. 2
      test_tipc/configs/seg/bisenetv2/train_infer_python.txt
  11. 2
      test_tipc/configs/seg/deeplabv3p/deeplabv3p_rsseg.yaml
  12. 4
      test_tipc/configs/seg/deeplabv3p/train_infer_python.txt
  13. 2
      test_tipc/configs/seg/farseg/farseg_rsseg.yaml
  14. 2
      test_tipc/configs/seg/farseg/train_infer_python.txt
  15. 4
      test_tipc/configs/seg/fast_scnn/fast_scnn_rsseg.yaml
  16. 2
      test_tipc/configs/seg/fast_scnn/train_infer_python.txt
  17. 2
      test_tipc/configs/seg/hrnet/hrnet_rsseg.yaml
  18. 2
      test_tipc/configs/seg/hrnet/train_infer_python.txt
  19. 2
      test_tipc/configs/seg/unet/train_infer_python.txt
  20. 2
      test_tipc/configs/seg/unet/unet_rsseg.yaml
  21. 14
      test_tipc/docs/test_train_inference_python.md

@ -1,5 +1,7 @@
# Basic configurations of AirChange dataset
seed: 1024
datasets:
train: !Node
type: CDDataset

@ -1,5 +1,7 @@
# Basic configurations of LEVIR-CD dataset
seed: 1024
datasets:
train: !Node
type: CDDataset

@ -1,5 +1,7 @@
# Basic configurations of UCMerced dataset
seed: 1024
datasets:
train: !Node
type: ClasDataset

@ -4,7 +4,7 @@ python:python
gpu_list:0|0,1
use_gpu:null|null
--precision:null
--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=10
--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=20
--save_dir:adaptive
--train_batch_size:lite_train_lite_infer=16|lite_train_whole_infer=16|whole_train_whole_infer=16
--model_path:null

@ -1,5 +1,7 @@
# Basic configurations of RSOD dataset
seed: 1024
datasets:
train: !Node
type: VOCDetDataset

@ -1,5 +1,7 @@
# Basic configurations of SARShip dataset
seed: 1024
datasets:
train: !Node
type: VOCDetDataset

@ -1,5 +1,7 @@
# Basic configurations of RSSR dataset
seed: 1024
datasets:
train: !Node
type: ResDataset

@ -1,5 +1,7 @@
# Basic configurations of RSSeg dataset
seed: 1024
datasets:
train: !Node
type: SegDataset
@ -32,8 +34,8 @@ transforms:
- !Node
type: Normalize
args:
mean: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
- !Node
type: ArrangeSegmenter
args: ['train']
@ -47,8 +49,8 @@ transforms:
- !Node
type: Normalize
args:
mean: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
- !Node
type: ArrangeSegmenter
args: ['eval']

@ -5,7 +5,7 @@ _base_: ../_base_/rsseg.yaml
save_dir: ./test_tipc/output/seg/bisenetv2/
model: !Node
type: BiSeNet V2
type: BiSeNetV2
args:
in_channels: 10
in_channels: 3
num_classes: 5

@ -27,7 +27,7 @@ null:null
===========================export_params===========================
--save_dir:adaptive
--model_dir:adaptive
--fixed_input_shape:[-1,10,512,512]
--fixed_input_shape:[-1,3,512,512]
norm_export:deploy/export/export_model.py
quant_export:null
fpgm_export:null

@ -7,5 +7,5 @@ save_dir: ./test_tipc/output/seg/deeplabv3p/
model: !Node
type: DeepLabV3P
args:
in_channels: 10
in_channels: 3
num_classes: 5

@ -4,7 +4,7 @@ python:python
gpu_list:0|0,1
use_gpu:null|null
--precision:null
--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=30
--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=20
--save_dir:adaptive
--train_batch_size:lite_train_lite_infer=4|lite_train_whole_infer=4|whole_train_whole_infer=4
--model_path:null
@ -27,7 +27,7 @@ null:null
===========================export_params===========================
--save_dir:adaptive
--model_dir:adaptive
--fixed_input_shape:[-1,10,512,512]
--fixed_input_shape:[-1,3,512,512]
norm_export:deploy/export/export_model.py
quant_export:null
fpgm_export:null

@ -7,5 +7,5 @@ save_dir: ./test_tipc/output/seg/farseg/
model: !Node
type: FarSeg
args:
in_channels: 10
in_channels: 3
num_classes: 5

@ -27,7 +27,7 @@ null:null
===========================export_params===========================
--save_dir:adaptive
--model_dir:adaptive
--fixed_input_shape:[-1,10,512,512]
--fixed_input_shape:[-1,3,512,512]
norm_export:deploy/export/export_model.py
quant_export:null
fpgm_export:null

@ -5,7 +5,7 @@ _base_: ../_base_/rsseg.yaml
save_dir: ./test_tipc/output/seg/fast_scnn/
model: !Node
type: Fast-SCNN
type: FastSCNN
args:
in_channels: 10
in_channels: 3
num_classes: 5

@ -27,7 +27,7 @@ null:null
===========================export_params===========================
--save_dir:adaptive
--model_dir:adaptive
--fixed_input_shape:[-1,10,512,512]
--fixed_input_shape:[-1,3,512,512]
norm_export:deploy/export/export_model.py
quant_export:null
fpgm_export:null

@ -7,5 +7,5 @@ save_dir: ./test_tipc/output/seg/hrnet/
model: !Node
type: HRNet
args:
in_channels: 10
in_channels: 3
num_classes: 5

@ -27,7 +27,7 @@ null:null
===========================export_params===========================
--save_dir:adaptive
--model_dir:adaptive
--fixed_input_shape:[-1,10,512,512]
--fixed_input_shape:[-1,3,512,512]
norm_export:deploy/export/export_model.py
quant_export:null
fpgm_export:null

@ -27,7 +27,7 @@ null:null
===========================export_params===========================
--save_dir:adaptive
--model_dir:adaptive
--fixed_input_shape:[-1,10,512,512]
--fixed_input_shape:[-1,3,512,512]
norm_export:deploy/export/export_model.py
quant_export:null
fpgm_export:null

@ -7,5 +7,5 @@ save_dir: ./test_tipc/output/seg/unet/
model: !Node
type: UNet
args:
in_channels: 10
in_channels: 3
num_classes: 5

@ -19,7 +19,7 @@ Linux GPU/CPU 基础训练推理测试的主程序为`test_train_inference_pytho
| 变化检测 | FC-Siam-conc | 正常训练 | 正常训练 | IoU=65.79% |
| 变化检测 | FC-Siam-diff | 正常训练 | 正常训练 | IoU=61.23% |
| 变化检测 | FCCDN | 正常训练 | 正常训练 | IoU=24.42% |
| 场景分类 | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)= |
| 场景分类 | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)=60.42% |
| 场景分类 | HRNet | 正常训练 | 正常训练 | Acc(top1)=99.37% |
| 场景分类 | MobileNetV3 | 正常训练 | 正常训练 | Acc(top1)=99.58% |
| 场景分类 | ResNet50-vd | 正常训练 | 正常训练 | Acc(top1)=99.26% |
@ -31,12 +31,12 @@ Linux GPU/CPU 基础训练推理测试的主程序为`test_train_inference_pytho
| 目标检测 | PP-YOLO Tiny | 正常训练 | 正常训练 | mAP=44.27% |
| 目标检测 | PP-YOLOv2 | 正常训练 | 正常训练 | mAP=59.37% |
| 目标检测 | YOLOv3 | 正常训练 | 正常训练 | mAP=47.33% |
| 图像分割 | BiSeNet V2 | 正常训练 | 正常训练 | mIoU= |
| 图像分割 | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=56.05% |
| 图像分割 | FarSeg | 正常训练 | 正常训练 | mIoU=49.58% |
| 图像分割 | Fast-SCNN | 正常训练 | 正常训练 | mIoU= |
| 图像分割 | HRNet | 正常训练 | 正常训练 | mIoU= |
| 图像分割 | UNet | 正常训练 | 正常训练 | mIoU=55.50% |
| 图像分割 | BiSeNet V2 | 正常训练 | 正常训练 | mIoU=70.20 |
| 图像分割 | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=64.59% |
| 图像分割 | FarSeg | 正常训练 | 正常训练 | mIoU=50.45% |
| 图像分割 | Fast-SCNN | 正常训练 | 正常训练 | mIoU=48.97% |
| 图像分割 | HRNet | 正常训练 | 正常训练 | mIoU=33.49% |
| 图像分割 | UNet | 正常训练 | 正常训练 | mIoU=72.64% |
*注:参考预测精度为whole_train_whole_infer模式下单卡训练汇报的精度数据。*

Loading…
Cancel
Save