|
|
|
@ -19,7 +19,7 @@ Linux GPU/CPU 基础训练推理测试的主程序为`test_train_inference_pytho |
|
|
|
|
| 变化检测 | FC-Siam-conc | 正常训练 | 正常训练 | IoU=65.79% | |
|
|
|
|
| 变化检测 | FC-Siam-diff | 正常训练 | 正常训练 | IoU=61.23% | |
|
|
|
|
| 变化检测 | FCCDN | 正常训练 | 正常训练 | IoU=24.42% | |
|
|
|
|
| 场景分类 | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)= | |
|
|
|
|
| 场景分类 | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)=60.42% | |
|
|
|
|
| 场景分类 | HRNet | 正常训练 | 正常训练 | Acc(top1)=99.37% | |
|
|
|
|
| 场景分类 | MobileNetV3 | 正常训练 | 正常训练 | Acc(top1)=99.58% | |
|
|
|
|
| 场景分类 | ResNet50-vd | 正常训练 | 正常训练 | Acc(top1)=99.26% | |
|
|
|
@ -31,12 +31,12 @@ Linux GPU/CPU 基础训练推理测试的主程序为`test_train_inference_pytho |
|
|
|
|
| 目标检测 | PP-YOLO Tiny | 正常训练 | 正常训练 | mAP=44.27% | |
|
|
|
|
| 目标检测 | PP-YOLOv2 | 正常训练 | 正常训练 | mAP=59.37% | |
|
|
|
|
| 目标检测 | YOLOv3 | 正常训练 | 正常训练 | mAP=47.33% | |
|
|
|
|
| 图像分割 | BiSeNet V2 | 正常训练 | 正常训练 | mIoU= | |
|
|
|
|
| 图像分割 | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=56.05% | |
|
|
|
|
| 图像分割 | FarSeg | 正常训练 | 正常训练 | mIoU=49.58% | |
|
|
|
|
| 图像分割 | Fast-SCNN | 正常训练 | 正常训练 | mIoU= | |
|
|
|
|
| 图像分割 | HRNet | 正常训练 | 正常训练 | mIoU= | |
|
|
|
|
| 图像分割 | UNet | 正常训练 | 正常训练 | mIoU=55.50% | |
|
|
|
|
| 图像分割 | BiSeNet V2 | 正常训练 | 正常训练 | mIoU=70.20 | |
|
|
|
|
| 图像分割 | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=64.59% | |
|
|
|
|
| 图像分割 | FarSeg | 正常训练 | 正常训练 | mIoU=50.45% | |
|
|
|
|
| 图像分割 | Fast-SCNN | 正常训练 | 正常训练 | mIoU=48.97% | |
|
|
|
|
| 图像分割 | HRNet | 正常训练 | 正常训练 | mIoU=33.49% | |
|
|
|
|
| 图像分割 | UNet | 正常训练 | 正常训练 | mIoU=72.64% | |
|
|
|
|
|
|
|
|
|
*注:参考预测精度为whole_train_whole_infer模式下单卡训练汇报的精度数据。* |
|
|
|
|
|
|
|
|
|