[Fix] Fix PCA used (#78)

own
Yizhou Chen 3 years ago committed by GitHub
parent 18c29f1ea2
commit de61f6007f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 45
      paddlers/transforms/functions.py
  2. 25
      paddlers/transforms/operators.py
  3. 4
      tools/geojson2mask.py
  4. 53
      tools/pca.py
  5. 40
      tools/utils/__init__.py
  6. 434
      tools/utils/raster.py

@ -18,9 +18,9 @@ import copy
import numpy as np
import shapely.ops
from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
from sklearn.decomposition import PCA
from sklearn.linear_model import LinearRegression
from skimage import exposure
from joblib import load
def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]):
@ -427,10 +427,6 @@ def to_uint8(im, is_linear=False):
return np.uint8(stretched_img * 255)
dtype = im.dtype.name
dtypes = ["uint8", "uint16", "uint32", "float32"]
if dtype not in dtypes:
raise ValueError(
f"'dtype' must be uint8/uint16/uint32/float32, not {dtype}.")
if dtype != "uint8":
im = _sample_norm(im)
if is_linear:
@ -533,26 +529,6 @@ def de_haze(im, gamma=False):
return (result * 255).astype("uint8")
def pca(im, dim=3, whiten=True):
""" Dimensionality reduction of PCA.
Args:
im (np.ndarray): The image.
dim (int, optional): Reserved dimensions. Defaults to 3.
whiten (bool, optional): PCA whiten or not. Defaults to True.
Returns:
np.ndarray: The image after PCA.
"""
H, W, C = im.shape
n_im = np.reshape(im, (-1, C))
pca = PCA(n_components=dim, whiten=whiten)
im_pca = pca.fit_transform(n_im)
result = np.reshape(im_pca, (H, W, dim))
result = np.clip(result, 0, 1)
return (result * 255).astype("uint8")
def match_histograms(im, ref):
"""
Match the cumulative histogram of one image to another.
@ -615,3 +591,22 @@ def match_by_regression(im, ref, pif_loc=None):
matched = _linear_regress(im, ref, pif_loc).astype(im.dtype)
return matched
def inv_pca(im, joblib_path):
"""
Restore PCA result.
Args:
im (np.ndarray): The input image after PCA.
joblib_path (str): Path of *.joblib about PCA.
Returns:
np.ndarray: The raw input image.
"""
pca = load(joblib_path)
H, W, C = im.shape
n_im = np.reshape(im, (-1, C))
r_im = pca.inverse_transform(n_im)
r_im = np.reshape(r_im, (H, W, -1))
return r_im

@ -27,11 +27,12 @@ import numpy as np
import cv2
import imghdr
from PIL import Image
from joblib import load
import paddlers
from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
crop_rle, expand_poly, expand_rle, resize_poly, resize_rle, de_haze, pca, select_bands, \
crop_rle, expand_poly, expand_rle, resize_poly, resize_rle, de_haze, select_bands, \
to_intensity, to_uint8, img_flip, img_simple_rotate
__all__ = [
@ -242,7 +243,7 @@ class Compose(Transform):
ValueError: Invalid length of transforms.
"""
def __init__(self, transforms):
def __init__(self, transforms, to_uint8=True):
super(Compose, self).__init__()
if not isinstance(transforms, list):
raise TypeError(
@ -253,7 +254,7 @@ class Compose(Transform):
'Length of transforms must not be less than 1, but received is {}'
.format(len(transforms)))
self.transforms = transforms
self.decode_image = ImgDecoder()
self.decode_image = ImgDecoder(to_uint8=to_uint8)
self.arrange_outputs = None
self.apply_im_only = False
@ -1552,18 +1553,22 @@ class DimReducing(Transform):
Use PCA to reduce input image(s) dimension.
Args:
dim (int, optional): Reserved dimensions. Defaults to 3.
whiten (bool, optional): PCA whiten or not. Defaults to True.
joblib_path (str): Path of *.joblib about PCA.
"""
def __init__(self, dim=3, whiten=True):
def __init__(self, joblib_path):
super(DimReducing, self).__init__()
self.dim = dim
self.whiten = whiten
ext = joblib_path.split(".")[-1]
if ext != "joblib":
raise ValueError("`joblib_path` must be *.joblib, not *.{}.".format(ext))
self.pca = load(joblib_path)
def apply_im(self, image):
image = pca(image, self.dim, self.whiten)
return image
H, W, C = image.shape
n_im = np.reshape(image, (-1, C))
im_pca = self.pca.transform(n_im)
result = np.reshape(im_pca, (H, W, -1))
return result
def apply(self, sample):
sample['image'] = self.apply_im(sample['image'])

@ -18,7 +18,7 @@ import numpy as np
import argparse
import geojson
from tqdm import tqdm
from utils import Raster, save_mask_geotiff, Timer
from utils import Raster, save_geotiff, Timer
def _gt_convert(x_geo, y_geo, geotf):
@ -48,7 +48,7 @@ def convert_data(image_path, geojson_path):
# TODO: Label category
cv2.fillPoly(tmp_img, [xy_points], 1) # 多边形填充
ext = "." + geojson_path.split(".")[-1]
save_mask_geotiff(tmp_img, geojson_path.replace(ext, ".tif"), raster.proj, raster.geot)
save_geotiff(tmp_img, geojson_path.replace(ext, ".tif"), raster.proj, raster.geot)
parser = argparse.ArgumentParser(description="input parameters")

@ -0,0 +1,53 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import numpy as np
import argparse
from sklearn.decomposition import PCA
from joblib import dump
from utils import Raster, Timer, save_geotiff
@Timer
def pca_train(img_path, save_dir="output", dim=3):
raster = Raster(img_path)
im = raster.getArray()
n_im = np.reshape(im, (-1, raster.bands))
pca = PCA(n_components=dim, whiten=True)
pca_model = pca.fit(n_im)
if not osp.exists(save_dir):
os.makedirs(save_dir)
name = osp.splitext(osp.normpath(img_path).split(os.sep)[-1])[0]
model_save_path = osp.join(save_dir, (name + "_pca.joblib"))
image_save_path = osp.join(save_dir, (name + "_pca.tif"))
dump(pca_model, model_save_path) # save model
output = pca_model.transform(n_im).reshape((raster.height, raster.width, -1))
save_geotiff(output, image_save_path, raster.proj, raster.geot) # save tiff
print("The Image and model of PCA saved in {}.".format(save_dir))
parser = argparse.ArgumentParser(description="input parameters")
parser.add_argument("--im_path", type=str, required=True, \
help="The path of HSIs image.")
parser.add_argument("--save_dir", type=str, default="output", \
help="The params(*.joblib) saved folder, `output` is the default.")
parser.add_argument("--dim", type=int, default=3, \
help="The dimension after reduced, `3` is the default.")
if __name__ == "__main__":
args = parser.parse_args()
pca_train(args.im_path, args.save_dir, args.dim)

@ -1,20 +1,20 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os.path as osp
sys.path.insert(0, osp.abspath("..")) # add workspace
from .raster import Raster, save_mask_geotiff, raster2uint8
from .timer import Timer
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os.path as osp
sys.path.insert(0, osp.abspath("..")) # add workspace
from .raster import Raster, raster2uint8, save_geotiff
from .timer import Timer

@ -1,207 +1,227 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
from typing import List, Tuple, Union
import numpy as np
from paddlers.transforms.functions import to_uint8 as raster2uint8
try:
from osgeo import gdal
except:
import gdal
class Raster:
def __init__(self,
path: str,
band_list: Union[List[int], Tuple[int], None]=None,
to_uint8: bool=False) -> None:
""" Class of read raster.
Args:
path (str): The path of raster.
band_list (Union[List[int], Tuple[int], None], optional):
band list (start with 1) or None (all of bands). Defaults to None.
to_uint8 (bool, optional):
Convert uint8 or return raw data. Defaults to False.
"""
super(Raster, self).__init__()
if osp.exists(path):
self.path = path
self.ext_type = path.split(".")[-1]
if self.ext_type.lower() in ["npy", "npz"]:
self._src_data = None
else:
try:
# raster format support in GDAL:
# https://www.osgeo.cn/gdal/drivers/raster/index.html
self._src_data = gdal.Open(path)
except:
raise TypeError("Unsupported data format: `{}`".format(
self.ext_type))
self.to_uint8 = to_uint8
self.setBands(band_list)
self._getInfo()
else:
raise ValueError("The path {0} not exists.".format(path))
def setBands(self, band_list: Union[List[int], Tuple[int], None]) -> None:
""" Set band of data.
Args:
band_list (Union[List[int], Tuple[int], None]):
band list (start with 1) or None (all of bands).
"""
self.bands = self._src_data.RasterCount
if band_list is not None:
if len(band_list) > self.bands:
raise ValueError(
"The lenght of band_list must be less than {0}.".format(
str(self.bands)))
if max(band_list) > self.bands or min(band_list) < 1:
raise ValueError("The range of band_list must within [1, {0}].".
format(str(self.bands)))
self.band_list = band_list
def getArray(
self,
start_loc: Union[List[int], Tuple[int], None]=None,
block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray:
""" Get ndarray data
Args:
start_loc (Union[List[int], Tuple[int], None], optional):
Coordinates of the upper left corner of the block, if None means return full image.
block_size (Union[List[int], Tuple[int]], optional):
Block size. Defaults to [512, 512].
Returns:
np.ndarray: data's ndarray.
"""
if self._src_data is not None:
if start_loc is None:
return self._getArray()
else:
return self._getBlock(start_loc, block_size)
else:
print("Numpy doesn't support blocking temporarily.")
return self._getNumpy()
def _getInfo(self) -> None:
if self._src_data is not None:
self.width = self._src_data.RasterXSize
self.height = self._src_data.RasterYSize
self.geot = self._src_data.GetGeoTransform()
self.proj = self._src_data.GetProjection()
d_name = self._getBlock([0, 0], [1, 1]).dtype.name
else:
d_img = self._getNumpy()
d_shape = d_img.shape
d_name = d_img.dtype.name
if len(d_shape) == 3:
self.height, self.width, self.bands = d_shape
else:
self.height, self.width = d_shape
self.bands = 1
self.geot = None
self.proj = None
if "int8" in d_name:
self.datatype = gdal.GDT_Byte
elif "int16" in d_name:
self.datatype = gdal.GDT_UInt16
else:
self.datatype = gdal.GDT_Float32
def _getNumpy(self):
ima = np.load(self.path)
if self.band_list is not None:
band_array = []
for b in self.band_list:
band_i = ima[:, :, b - 1]
band_array.append(band_i)
ima = np.stack(band_array, axis=0)
return ima
def _getArray(
self,
window: Union[None, List[int], Tuple[int]]=None) -> np.ndarray:
if window is not None:
xoff, yoff, xsize, ysize = window
if self.band_list is None:
if window is None:
ima = self._src_data.ReadAsArray()
else:
ima = self._src_data.ReadAsArray(xoff, yoff, xsize, ysize)
else:
band_array = []
for b in self.band_list:
if window is None:
band_i = self._src_data.GetRasterBand(b).ReadAsArray()
else:
band_i = self._src_data.GetRasterBand(b).ReadAsArray(
xoff, yoff, xsize, ysize)
band_array.append(band_i)
ima = np.stack(band_array, axis=0)
if self.bands == 1:
if len(ima.shape) == 3:
ima = ima.squeeze(0)
# the type is complex means this is a SAR data
if isinstance(type(ima[0, 0]), complex):
ima = abs(ima)
else:
ima = ima.transpose((1, 2, 0))
if self.to_uint8 is True:
ima = raster2uint8(ima)
return ima
def _getBlock(
self,
start_loc: Union[List[int], Tuple[int]],
block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray:
if len(start_loc) != 2 or len(block_size) != 2:
raise ValueError("The length start_loc/block_size must be 2.")
xoff, yoff = start_loc
xsize, ysize = block_size
if (xoff < 0 or xoff > self.width) or (yoff < 0 or yoff > self.height):
raise ValueError("start_loc must be within [0-{0}, 0-{1}].".format(
str(self.width), str(self.height)))
if xoff + xsize > self.width:
xsize = self.width - xoff
if yoff + ysize > self.height:
ysize = self.height - yoff
ima = self._getArray([int(xoff), int(yoff), int(xsize), int(ysize)])
h, w = ima.shape[:2] if len(ima.shape) == 3 else ima.shape
if self.bands != 1:
tmp = np.zeros(
(block_size[0], block_size[1], self.bands), dtype=ima.dtype)
tmp[:h, :w, :] = ima
else:
tmp = np.zeros((block_size[0], block_size[1]), dtype=ima.dtype)
tmp[:h, :w] = ima
return tmp
def save_mask_geotiff(mask: np.ndarray, save_path: str, proj: str, geotf: Tuple) -> None:
height, width = mask.shape
driver = gdal.GetDriverByName("GTiff")
dst_ds = driver.Create(save_path, width, height, 1, gdal.GDT_UInt16)
dst_ds.SetGeoTransform(geotf)
dst_ds.SetProjection(proj)
band = dst_ds.GetRasterBand(1)
band.WriteArray(mask)
dst_ds.FlushCache()
dst_ds = None
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
from typing import List, Tuple, Union
import numpy as np
from paddlers.transforms.functions import to_uint8 as raster2uint8
try:
from osgeo import gdal
except:
import gdal
def _get_type(type_name: str) -> int:
if type_name in ["bool", "uint8"]:
gdal_type = gdal.GDT_Byte
elif type_name in ["int8", "int16"]:
gdal_type = gdal.GDT_Int16
elif type_name == "uint16":
gdal_type = gdal.GDT_UInt16
elif type_name == "int32":
gdal_type = gdal.GDT_Int32
elif type_name == "uint32":
gdal_type = gdal.GDT_UInt32
elif type_name in ["int64", "uint64", "float16", "float32"]:
gdal_type = gdal.GDT_Float32
elif type_name == "float64":
gdal_type = gdal.GDT_Float64
elif type_name == "complex64":
gdal_type = gdal.GDT_CFloat64
else:
raise TypeError("Non-suported data type `{}`.".format(type_name))
return gdal_type
class Raster:
def __init__(self,
path: str,
band_list: Union[List[int], Tuple[int], None]=None,
to_uint8: bool=False) -> None:
""" Class of read raster.
Args:
path (str): The path of raster.
band_list (Union[List[int], Tuple[int], None], optional):
band list (start with 1) or None (all of bands). Defaults to None.
to_uint8 (bool, optional):
Convert uint8 or return raw data. Defaults to False.
"""
super(Raster, self).__init__()
if osp.exists(path):
self.path = path
self.ext_type = path.split(".")[-1]
if self.ext_type.lower() in ["npy", "npz"]:
self._src_data = None
else:
try:
# raster format support in GDAL:
# https://www.osgeo.cn/gdal/drivers/raster/index.html
self._src_data = gdal.Open(path)
except:
raise TypeError("Unsupported data format: `{}`".format(
self.ext_type))
self.to_uint8 = to_uint8
self.setBands(band_list)
self._getInfo()
else:
raise ValueError("The path {0} not exists.".format(path))
def setBands(self, band_list: Union[List[int], Tuple[int], None]) -> None:
""" Set band of data.
Args:
band_list (Union[List[int], Tuple[int], None]):
band list (start with 1) or None (all of bands).
"""
self.bands = self._src_data.RasterCount
if band_list is not None:
if len(band_list) > self.bands:
raise ValueError(
"The lenght of band_list must be less than {0}.".format(
str(self.bands)))
if max(band_list) > self.bands or min(band_list) < 1:
raise ValueError("The range of band_list must within [1, {0}].".
format(str(self.bands)))
self.band_list = band_list
def getArray(
self,
start_loc: Union[List[int], Tuple[int], None]=None,
block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray:
""" Get ndarray data
Args:
start_loc (Union[List[int], Tuple[int], None], optional):
Coordinates of the upper left corner of the block, if None means return full image.
block_size (Union[List[int], Tuple[int]], optional):
Block size. Defaults to [512, 512].
Returns:
np.ndarray: data's ndarray.
"""
if self._src_data is not None:
if start_loc is None:
return self._getArray()
else:
return self._getBlock(start_loc, block_size)
else:
print("Numpy doesn't support blocking temporarily.")
return self._getNumpy()
def _getInfo(self) -> None:
if self._src_data is not None:
self.width = self._src_data.RasterXSize
self.height = self._src_data.RasterYSize
self.geot = self._src_data.GetGeoTransform()
self.proj = self._src_data.GetProjection()
d_name = self._getBlock([0, 0], [1, 1]).dtype.name
else:
d_img = self._getNumpy()
d_shape = d_img.shape
d_name = d_img.dtype.name
if len(d_shape) == 3:
self.height, self.width, self.bands = d_shape
else:
self.height, self.width = d_shape
self.bands = 1
self.geot = None
self.proj = None
self.datatype = _get_type(d_name)
def _getNumpy(self):
ima = np.load(self.path)
if self.band_list is not None:
band_array = []
for b in self.band_list:
band_i = ima[:, :, b - 1]
band_array.append(band_i)
ima = np.stack(band_array, axis=0)
return ima
def _getArray(
self,
window: Union[None, List[int], Tuple[int]]=None) -> np.ndarray:
if window is not None:
xoff, yoff, xsize, ysize = window
if self.band_list is None:
if window is None:
ima = self._src_data.ReadAsArray()
else:
ima = self._src_data.ReadAsArray(xoff, yoff, xsize, ysize)
else:
band_array = []
for b in self.band_list:
if window is None:
band_i = self._src_data.GetRasterBand(b).ReadAsArray()
else:
band_i = self._src_data.GetRasterBand(b).ReadAsArray(
xoff, yoff, xsize, ysize)
band_array.append(band_i)
ima = np.stack(band_array, axis=0)
if self.bands == 1:
if len(ima.shape) == 3:
ima = ima.squeeze(0)
# the type is complex means this is a SAR data
if isinstance(type(ima[0, 0]), complex):
ima = abs(ima)
else:
ima = ima.transpose((1, 2, 0))
if self.to_uint8 is True:
ima = raster2uint8(ima)
return ima
def _getBlock(
self,
start_loc: Union[List[int], Tuple[int]],
block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray:
if len(start_loc) != 2 or len(block_size) != 2:
raise ValueError("The length start_loc/block_size must be 2.")
xoff, yoff = start_loc
xsize, ysize = block_size
if (xoff < 0 or xoff > self.width) or (yoff < 0 or yoff > self.height):
raise ValueError("start_loc must be within [0-{0}, 0-{1}].".format(
str(self.width), str(self.height)))
if xoff + xsize > self.width:
xsize = self.width - xoff
if yoff + ysize > self.height:
ysize = self.height - yoff
ima = self._getArray([int(xoff), int(yoff), int(xsize), int(ysize)])
h, w = ima.shape[:2] if len(ima.shape) == 3 else ima.shape
if self.bands != 1:
tmp = np.zeros(
(block_size[0], block_size[1], self.bands), dtype=ima.dtype)
tmp[:h, :w, :] = ima
else:
tmp = np.zeros((block_size[0], block_size[1]), dtype=ima.dtype)
tmp[:h, :w] = ima
return tmp
def save_geotiff(image: np.ndarray, save_path: str, proj: str, geotf: Tuple) -> None:
height, width, channel = image.shape
data_type = _get_type(image.dtype.name)
driver = gdal.GetDriverByName("GTiff")
dst_ds = driver.Create(save_path, width, height, channel, data_type)
dst_ds.SetGeoTransform(geotf)
dst_ds.SetProjection(proj)
if channel > 1:
for i in range(channel):
band = dst_ds.GetRasterBand(i + 1)
band.WriteArray(image[:, :, i])
dst_ds.FlushCache()
else:
band = dst_ds.GetRasterBand(1)
band.WriteArray(image)
dst_ds.FlushCache()
dst_ds = None

Loading…
Cancel
Save