[Feature] Add training tutorials for classification tasks (#37)
parent
39c82d943a
commit
ce96ff2367
10 changed files with 301 additions and 68 deletions
Binary file not shown.
@ -0,0 +1,3 @@ |
||||
*.zip |
||||
*.tar.gz |
||||
ucmerced/ |
@ -0,0 +1,87 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# 场景分类模型HRNet训练示例脚本 |
||||
# 执行此脚本前,请确认已正确安装PaddleRS库 |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载文件存放目录 |
||||
DOWNLOAD_DIR = './data/ucmerced/' |
||||
# 数据集存放目录 |
||||
DATA_DIR = './data/ucmerced/UCMerced_LandUse/' |
||||
# 训练集`file_list`文件路径 |
||||
TRAIN_FILE_LIST_PATH = './data/ucmerced/train.txt' |
||||
# 验证集`file_list`文件路径 |
||||
EVAL_FILE_LIST_PATH = './data/ucmerced/val.txt' |
||||
# 数据集类别信息文件路径 |
||||
LABEL_LIST_PATH = './data/ucmerced/labels.txt' |
||||
# 实验目录,保存输出的模型权重和结果 |
||||
EXP_DIR = './output/hrnet/' |
||||
|
||||
# 下载和解压UC Merced数据集 |
||||
ucmerced_dataset = 'http://weegee.vision.ucmerced.edu/datasets/UCMerced_LandUse.zip' |
||||
pdrs.utils.download_and_decompress(ucmerced_dataset, path=DOWNLOAD_DIR) |
||||
|
||||
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
||||
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
||||
# API说明:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/transforms.md |
||||
train_transforms = T.Compose([ |
||||
# 将影像缩放到256x256大小 |
||||
T.Resize(target_size=256), |
||||
# 以50%的概率实施随机水平翻转 |
||||
T.RandomHorizontalFlip(prob=0.5), |
||||
# 以50%的概率实施随机垂直翻转 |
||||
T.RandomVerticalFlip(prob=0.5), |
||||
# 将数据归一化到[-1,1] |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=256), |
||||
# 验证阶段与训练阶段的数据归一化方式必须相同 |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
# 分别构建训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=TRAIN_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=EVAL_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 使用默认参数构建HRNet模型 |
||||
# 目前已支持的模型请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/model_zoo.md |
||||
# 模型输入参数请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/paddlers/tasks/classifier.py |
||||
model = pdrs.tasks.HRNet_W18_C(num_classes=len(train_dataset.labels)) |
||||
|
||||
# 执行模型训练 |
||||
model.train( |
||||
num_epochs=2, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=16, |
||||
eval_dataset=eval_dataset, |
||||
save_interval_epochs=1, |
||||
# 每多少次迭代记录一次日志 |
||||
log_interval_steps=50, |
||||
save_dir=EXP_DIR, |
||||
# 初始学习率大小 |
||||
learning_rate=0.01, |
||||
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
||||
early_stop=False, |
||||
# 是否启用VisualDL日志功能 |
||||
use_vdl=True, |
||||
# 指定从某个检查点继续训练 |
||||
resume_checkpoint=None) |
@ -0,0 +1,87 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# 场景分类模型MobileNetV3训练示例脚本 |
||||
# 执行此脚本前,请确认已正确安装PaddleRS库 |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载文件存放目录 |
||||
DOWNLOAD_DIR = './data/ucmerced/' |
||||
# 数据集存放目录 |
||||
DATA_DIR = './data/ucmerced/UCMerced_LandUse/' |
||||
# 训练集`file_list`文件路径 |
||||
TRAIN_FILE_LIST_PATH = './data/ucmerced/train.txt' |
||||
# 验证集`file_list`文件路径 |
||||
EVAL_FILE_LIST_PATH = './data/ucmerced/val.txt' |
||||
# 数据集类别信息文件路径 |
||||
LABEL_LIST_PATH = './data/ucmerced/labels.txt' |
||||
# 实验目录,保存输出的模型权重和结果 |
||||
EXP_DIR = './output/mobilenetv3/' |
||||
|
||||
# 下载和解压UC Merced数据集 |
||||
ucmerced_dataset = 'http://weegee.vision.ucmerced.edu/datasets/UCMerced_LandUse.zip' |
||||
pdrs.utils.download_and_decompress(ucmerced_dataset, path=DOWNLOAD_DIR) |
||||
|
||||
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
||||
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
||||
# API说明:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/transforms.md |
||||
train_transforms = T.Compose([ |
||||
# 将影像缩放到256x256大小 |
||||
T.Resize(target_size=256), |
||||
# 以50%的概率实施随机水平翻转 |
||||
T.RandomHorizontalFlip(prob=0.5), |
||||
# 以50%的概率实施随机垂直翻转 |
||||
T.RandomVerticalFlip(prob=0.5), |
||||
# 将数据归一化到[-1,1] |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=256), |
||||
# 验证阶段与训练阶段的数据归一化方式必须相同 |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
# 分别构建训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=TRAIN_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=EVAL_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 使用默认参数构建MobileNetV3模型 |
||||
# 目前已支持的模型请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/model_zoo.md |
||||
# 模型输入参数请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/paddlers/tasks/classifier.py |
||||
model = pdrs.tasks.MobileNetV3_small_x1_0(num_classes=len(train_dataset.labels)) |
||||
|
||||
# 执行模型训练 |
||||
model.train( |
||||
num_epochs=2, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=16, |
||||
eval_dataset=eval_dataset, |
||||
save_interval_epochs=1, |
||||
# 每多少次迭代记录一次日志 |
||||
log_interval_steps=50, |
||||
save_dir=EXP_DIR, |
||||
# 初始学习率大小 |
||||
learning_rate=0.01, |
||||
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
||||
early_stop=False, |
||||
# 是否启用VisualDL日志功能 |
||||
use_vdl=True, |
||||
# 指定从某个检查点继续训练 |
||||
resume_checkpoint=None) |
@ -0,0 +1,87 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# 场景分类模型ResNet50-vd训练示例脚本 |
||||
# 执行此脚本前,请确认已正确安装PaddleRS库 |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载文件存放目录 |
||||
DOWNLOAD_DIR = './data/ucmerced/' |
||||
# 数据集存放目录 |
||||
DATA_DIR = './data/ucmerced/UCMerced_LandUse/' |
||||
# 训练集`file_list`文件路径 |
||||
TRAIN_FILE_LIST_PATH = './data/ucmerced/train.txt' |
||||
# 验证集`file_list`文件路径 |
||||
EVAL_FILE_LIST_PATH = './data/ucmerced/val.txt' |
||||
# 数据集类别信息文件路径 |
||||
LABEL_LIST_PATH = './data/ucmerced/labels.txt' |
||||
# 实验目录,保存输出的模型权重和结果 |
||||
EXP_DIR = './output/resnet50_vd/' |
||||
|
||||
# 下载和解压UC Merced数据集 |
||||
ucmerced_dataset = 'http://weegee.vision.ucmerced.edu/datasets/UCMerced_LandUse.zip' |
||||
pdrs.utils.download_and_decompress(ucmerced_dataset, path=DOWNLOAD_DIR) |
||||
|
||||
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
||||
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
||||
# API说明:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/transforms.md |
||||
train_transforms = T.Compose([ |
||||
# 将影像缩放到256x256大小 |
||||
T.Resize(target_size=256), |
||||
# 以50%的概率实施随机水平翻转 |
||||
T.RandomHorizontalFlip(prob=0.5), |
||||
# 以50%的概率实施随机垂直翻转 |
||||
T.RandomVerticalFlip(prob=0.5), |
||||
# 将数据归一化到[-1,1] |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=256), |
||||
# 验证阶段与训练阶段的数据归一化方式必须相同 |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
# 分别构建训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=TRAIN_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=EVAL_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 使用默认参数构建ResNet50-vd模型 |
||||
# 目前已支持的模型请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/model_zoo.md |
||||
# 模型输入参数请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/paddlers/tasks/classifier.py |
||||
model = pdrs.tasks.ResNet50_vd(num_classes=len(train_dataset.labels)) |
||||
|
||||
# 执行模型训练 |
||||
model.train( |
||||
num_epochs=2, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=16, |
||||
eval_dataset=eval_dataset, |
||||
save_interval_epochs=1, |
||||
# 每多少次迭代记录一次日志 |
||||
log_interval_steps=50, |
||||
save_dir=EXP_DIR, |
||||
# 初始学习率大小 |
||||
learning_rate=0.01, |
||||
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
||||
early_stop=False, |
||||
# 是否启用VisualDL日志功能 |
||||
use_vdl=True, |
||||
# 指定从某个检查点继续训练 |
||||
resume_checkpoint=None) |
@ -1,49 +0,0 @@ |
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载aistudio的数据到当前文件夹并解压、整理 |
||||
# https://aistudio.baidu.com/aistudio/datasetdetail/63189 |
||||
|
||||
# 定义训练和验证时的transforms |
||||
train_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.RandomHorizontalFlip(), |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
# 定义训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir='tutorials/train/classification/DataSet', |
||||
file_list='tutorials/train/classification/DataSet/train_list.txt', |
||||
label_list='tutorials/train/classification/DataSet/label_list.txt', |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir='tutorials/train/classification/DataSet', |
||||
file_list='tutorials/train/classification/DataSet/test_list.txt', |
||||
label_list='tutorials/train/classification/DataSet/label_list.txt', |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 初始化模型 |
||||
num_classes = len(train_dataset.labels) |
||||
model = pdrs.tasks.ResNet50_vd(num_classes=num_classes) |
||||
|
||||
# 进行训练 |
||||
model.train( |
||||
num_epochs=10, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=4, |
||||
eval_dataset=eval_dataset, |
||||
learning_rate=0.1, |
||||
save_dir='output/resnet_vd') |
Loading…
Reference in new issue