[论文复现赛] FarSeg (#45)

* Update FarSeg

* Update FarSeg

* Compatible initialization
own
ucsk 2 years ago committed by GitHub
parent 9625d958e3
commit bc5b536ed8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 20
      paddlers/rs_models/cd/changestar.py
  2. 326
      paddlers/rs_models/seg/farseg.py
  3. 11
      tests/rs_models/test_seg_models.py

@ -14,7 +14,6 @@
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlers.datasets.cd_dataset import MaskType
from paddlers.rs_models.seg import FarSeg
@ -22,7 +21,6 @@ from .layers import Conv3x3, Identity
class _ChangeStarBase(nn.Layer):
USE_MULTITASK_DECODER = True
OUT_TYPES = (MaskType.CD, MaskType.CD, MaskType.SEG_T1, MaskType.SEG_T2)
@ -118,22 +116,12 @@ class ChangeStar_FarSeg(_ChangeStarBase):
def __init__(self, seg_model):
super(_FarSegWrapper, self).__init__()
self._seg_model = seg_model
self._seg_model.cls_pred_conv = Identity()
self._seg_model.cls_head = Identity()
def forward(self, x):
feat_list = self._seg_model.en(x)
fpn_feat_list = self._seg_model.fpn(feat_list)
if self._seg_model.scene_relation:
c5 = feat_list[-1]
c6 = self._seg_model.gap(c5)
refined_fpn_feat_list = self._seg_model.sr(c6,
fpn_feat_list)
else:
refined_fpn_feat_list = fpn_feat_list
final_feat = self._seg_model.decoder(refined_fpn_feat_list)
return [final_feat]
seg_model = FarSeg(out_ch=mid_channels)
return self._seg_model(x)
seg_model = FarSeg(decoder_out_channels=mid_channels)
super(ChangeStar_FarSeg, self).__init__(
seg_model=_FarSegWrapper(seg_model),

@ -20,25 +20,79 @@ import math
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.vision.models import resnet50
from paddle import nn
import paddle.nn.functional as F
from paddle.vision.models import resnet
from .layers import (Identity, ConvReLU, kaiming_normal_init, constant_init)
from paddlers.models.ppdet.modeling import initializer as init
class FPN(nn.Layer):
"""
Module that adds FPN on top of a list of feature maps.
The feature maps are currently supposed to be in increasing depth
order, and must be consecutive.
"""
class FPNConvBlock(nn.Conv2D):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1):
super(FPNConvBlock, self).__init__(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=dilation * (kernel_size - 1) // 2,
dilation=dilation)
init.kaiming_uniform_(self.weight, a=1)
init.constant_(self.bias, value=0)
class DefaultConvBlock(nn.Conv2D):
def __init__(self,
in_channels_list,
in_channels,
out_channels,
conv_block=ConvReLU,
top_blocks=None):
kernel_size,
stride=1,
padding=0,
bias_attr=None):
super(DefaultConvBlock, self).__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
bias_attr=bias_attr)
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
class ResNetEncoder(nn.Layer):
def __init__(self, backbone='resnet50', in_channels=3, pretrained=True):
super(ResNetEncoder, self).__init__()
self.resnet = getattr(resnet, backbone)(pretrained=pretrained)
if in_channels != 3:
self.resnet.conv1 = nn.Conv2D(
in_channels, 64, 7, stride=2, padding=3, bias_attr=False)
for layer in self.resnet.sublayers():
if isinstance(layer, (nn.BatchNorm2D, nn.SyncBatchNorm)):
layer._momentum = 0.1
def forward(self, x):
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x = self.resnet.relu(x)
x = self.resnet.maxpool(x)
c2 = self.resnet.layer1(x)
c3 = self.resnet.layer2(c2)
c4 = self.resnet.layer3(c3)
c5 = self.resnet.layer4(c4)
return [c2, c3, c4, c5]
class FPN(nn.Layer):
def __init__(self, in_channels_list, out_channels, conv_block=FPNConvBlock):
super(FPN, self).__init__()
inner_blocks = []
@ -46,17 +100,10 @@ class FPN(nn.Layer):
for idx, in_channels in enumerate(in_channels_list, 1):
if in_channels == 0:
continue
inner_block_module = conv_block(in_channels, out_channels, 1)
layer_block_module = conv_block(out_channels, out_channels, 3, 1)
for module in [inner_block_module, layer_block_module]:
for m in module.sublayers():
if isinstance(m, nn.Conv2D):
kaiming_normal_init(m.weight)
inner_blocks.append(inner_block_module)
layer_blocks.append(layer_block_module)
inner_blocks.append(conv_block(in_channels, out_channels, 1))
layer_blocks.append(conv_block(out_channels, out_channels, 3, 1))
self.inner_blocks = nn.LayerList(inner_blocks)
self.layer_blocks = nn.LayerList(layer_blocks)
self.top_blocks = top_blocks
def forward(self, x):
last_inner = self.inner_blocks[-1](x[-1])
@ -69,80 +116,55 @@ class FPN(nn.Layer):
inner_lateral = inner_block(feature)
last_inner = inner_lateral + inner_top_down
results.insert(0, layer_block(last_inner))
if isinstance(self.top_blocks, LastLevelP6P7):
last_results = self.top_blocks(x[-1], results[-1])
results.extend(last_results)
elif isinstance(self.top_blocks, LastLevelMaxPool):
last_results = self.top_blocks(results[-1])
results.extend(last_results)
return tuple(results)
class LastLevelMaxPool(nn.Layer):
def forward(self, x):
return [F.max_pool2d(x, 1, 2, 0)]
class LastLevelP6P7(nn.Layer):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7.
"""
def __init__(self, in_channels, out_channels):
super(LastLevelP6P7, self).__init__()
self.p6 = nn.Conv2D(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2D(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
for m in module.sublayers():
kaiming_normal_init(m.weight)
constant_init(m.bias, value=0)
self.use_P5 = in_channels == out_channels
def forward(self, c5, p5):
x = p5 if self.use_P5 else c5
p6 = self.p6(x)
p7 = self.p7(F.relu(p6))
return [p6, p7]
class SceneRelation(nn.Layer):
class FSRelation(nn.Layer):
def __init__(self,
in_channels,
channel_list,
channels_list,
out_channels,
scale_aware_proj=True):
super(SceneRelation, self).__init__()
scale_aware_proj=True,
conv_block=DefaultConvBlock):
super(FSRelation, self).__init__()
self.scale_aware_proj = scale_aware_proj
if scale_aware_proj:
if self.scale_aware_proj:
self.scene_encoder = nn.LayerList([
nn.Sequential(
nn.Conv2D(in_channels, out_channels, 1),
nn.ReLU(), nn.Conv2D(out_channels, out_channels, 1))
for _ in range(len(channel_list))
conv_block(in_channels, out_channels, 1),
nn.ReLU(), conv_block(out_channels, out_channels, 1))
for _ in range(len(channels_list))
])
else:
# 2mlp
self.scene_encoder = nn.Sequential(
nn.Conv2D(in_channels, out_channels, 1),
nn.ReLU(),
nn.Conv2D(out_channels, out_channels, 1), )
conv_block(in_channels, out_channels, 1),
nn.ReLU(), conv_block(out_channels, out_channels, 1))
self.content_encoders = nn.LayerList()
self.feature_reencoders = nn.LayerList()
for c in channel_list:
for channel in channels_list:
self.content_encoders.append(
nn.Sequential(
nn.Conv2D(c, out_channels, 1),
nn.BatchNorm2D(out_channels), nn.ReLU()))
conv_block(
channel, out_channels, 1, bias_attr=True),
nn.BatchNorm2D(
out_channels, momentum=0.1),
nn.ReLU()))
self.feature_reencoders.append(
nn.Sequential(
nn.Conv2D(c, out_channels, 1),
nn.BatchNorm2D(out_channels), nn.ReLU()))
conv_block(
channel, out_channels, 1, bias_attr=True),
nn.BatchNorm2D(
out_channels, momentum=0.1),
nn.ReLU()))
self.normalizer = nn.Sigmoid()
def forward(self, scene_feature, features: list):
def forward(self, scene_feature, feature_list):
content_feats = [
c_en(p_feat)
for c_en, p_feat in zip(self.content_encoders, features)
for c_en, p_feat in zip(self.content_encoders, feature_list)
]
if self.scale_aware_proj:
scene_feats = [op(scene_feature) for op in self.scene_encoder]
@ -157,7 +179,8 @@ class SceneRelation(nn.Layer):
for cf in content_feats
]
p_feats = [
op(p_feat) for op, p_feat in zip(self.feature_reencoders, features)
op(p_feat)
for op, p_feat in zip(self.feature_reencoders, feature_list)
]
refined_feats = [r * p for r, p in zip(relations, p_feats)]
return refined_feats
@ -167,71 +190,40 @@ class AsymmetricDecoder(nn.Layer):
def __init__(self,
in_channels,
out_channels,
in_feat_output_strides=(4, 8, 16, 32),
out_feat_output_stride=4,
norm_fn=nn.BatchNorm2D,
num_groups_gn=None):
in_feature_output_strides=(4, 8, 16, 32),
out_feature_output_stride=4,
conv_block=DefaultConvBlock):
super(AsymmetricDecoder, self).__init__()
if norm_fn == nn.BatchNorm2D:
norm_fn_args = dict(num_features=out_channels)
elif norm_fn == nn.GroupNorm:
if num_groups_gn is None:
raise ValueError(
'When norm_fn is nn.GroupNorm, num_groups_gn is needed.')
norm_fn_args = dict(
num_groups=num_groups_gn, num_channels=out_channels)
else:
raise ValueError('Type of {} is not support.'.format(type(norm_fn)))
self.blocks = nn.LayerList()
for in_feat_os in in_feat_output_strides:
num_upsample = int(math.log2(int(in_feat_os))) - int(
math.log2(int(out_feat_output_stride)))
for in_feature_output_stride in in_feature_output_strides:
num_upsample = int(math.log2(int(in_feature_output_stride))) - int(
math.log2(int(out_feature_output_stride)))
num_layers = num_upsample if num_upsample != 0 else 1
self.blocks.append(
nn.Sequential(*[
nn.Sequential(
nn.Conv2D(
conv_block(
in_channels if idx == 0 else out_channels,
out_channels,
3,
1,
1,
bias_attr=False),
norm_fn(**norm_fn_args)
if norm_fn is not None else Identity(),
nn.BatchNorm2D(
out_channels, momentum=0.1),
nn.ReLU(),
nn.UpsamplingBilinear2D(scale_factor=2) if num_upsample
!= 0 else Identity(), ) for idx in range(num_layers)
!= 0 else nn.Identity(), ) for idx in range(num_layers)
]))
def forward(self, feat_list: list):
inner_feat_list = []
def forward(self, feature_list):
inner_feature_list = []
for idx, block in enumerate(self.blocks):
decoder_feat = block(feat_list[idx])
inner_feat_list.append(decoder_feat)
out_feat = sum(inner_feat_list) / 4.
return out_feat
class ResNet50Encoder(nn.Layer):
def __init__(self, in_ch=3, pretrained=True):
super(ResNet50Encoder, self).__init__()
self.resnet = resnet50(pretrained=pretrained)
if in_ch != 3:
self.resnet.conv1 = nn.Conv2D(
in_ch, 64, kernel_size=7, stride=2, padding=3, bias_attr=False)
def forward(self, inputs):
x = inputs
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x = self.resnet.relu(x)
x = self.resnet.maxpool(x)
c2 = self.resnet.layer1(x)
c3 = self.resnet.layer2(c2)
c4 = self.resnet.layer3(c3)
c5 = self.resnet.layer4(c4)
return [c2, c3, c4, c5]
decoder_feature = block(feature_list[idx])
inner_feature_list.append(decoder_feature)
out_feature = sum(inner_feature_list) / len(inner_feature_list)
return out_feature
class FarSeg(nn.Layer):
@ -239,50 +231,66 @@ class FarSeg(nn.Layer):
The FarSeg implementation based on PaddlePaddle.
The original article refers to
Zheng, Zhuo, et al. "Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution
Remote Sensing Imagery"
(https://openaccess.thecvf.com/content_CVPR_2020/papers/Zheng_Foreground-Aware_Relation_Network_for_Geospatial_Object_Segmentation_in_High_Spatial_CVPR_2020_paper.pdf)
Zheng Z, Zhong Y, Wang J, et al. Foreground-aware relation network for geospatial object segmentation in
high spatial resolution remote sensing imagery[C]//Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020: 4096-4105.
Args:
in_channels (int, optional): Number of bands of the input images. Default: 3.
num_classes (int, optional): Number of target classes. Default: 16.
fpn_ch_list (list[int]|tuple[int], optional): Channel list of the FPN. Default: (256, 512, 1024, 2048).
mid_ch (int, optional): Output channels of the FPN. Default: 256.
out_ch (int, optional): Output channels of the decoder. Default: 128.
sr_ch_list (list[int]|tuple[int], optional): Channel list of the foreground-scene relation module. Default: (256, 256, 256, 256).
pretrained_encoder (bool, optional): Whether to use a pretrained encoder. Default: True.
in_channels (int): The number of image channels for the input model. Default: 3.
num_classes (int): The unique number of target classes. Default: 16.
backbone (str): A backbone network, models available in `paddle.vision.models.resnet`. Default: resnet50.
backbone_pretrained (bool): Whether the backbone network uses IMAGENET pretrained weights. Default: True.
fpn_out_channels (int): The number of channels output by the feature pyramid network. Default: 256.
fsr_out_channels (int): The number of channels output by the F-S relation module. Default: 256.
scale_aware_proj (bool): Whether to use scale awareness in F-S relation module. Default: True.
decoder_out_channels (int): The number of channels output by the decoder. Default: 128.
"""
def __init__(self,
in_channels=3,
num_classes=16,
fpn_ch_list=(256, 512, 1024, 2048),
mid_ch=256,
out_ch=128,
sr_ch_list=(256, 256, 256, 256),
pretrained_encoder=True):
backbone='resnet50',
backbone_pretrained=True,
fpn_out_channels=256,
fsr_out_channels=256,
scale_aware_proj=True,
decoder_out_channels=128):
super(FarSeg, self).__init__()
self.en = ResNet50Encoder(in_channels, pretrained_encoder)
self.fpn = FPN(in_channels_list=fpn_ch_list, out_channels=mid_ch)
backbone = backbone.lower()
self.encoder = ResNetEncoder(
backbone=backbone,
in_channels=in_channels,
pretrained=backbone_pretrained)
fpn_max_in_channels = 2048
if backbone in ['resnet18', 'resnet34']:
fpn_max_in_channels = 512
self.fpn = FPN(in_channels_list=[
fpn_max_in_channels // (2**(3 - i)) for i in range(4)
],
out_channels=fpn_out_channels)
self.gap = nn.AdaptiveAvgPool2D(1)
self.fsr = FSRelation(
in_channels=fpn_max_in_channels,
channels_list=[fpn_out_channels] * 4,
out_channels=fsr_out_channels,
scale_aware_proj=scale_aware_proj)
self.decoder = AsymmetricDecoder(
in_channels=mid_ch, out_channels=out_ch)
self.cls_pred_conv = nn.Conv2D(out_ch, num_classes, 1)
self.upsample4x_op = nn.UpsamplingBilinear2D(scale_factor=4)
self.scene_relation = True if sr_ch_list is not None else False
if self.scene_relation:
self.gap = nn.AdaptiveAvgPool2D(1)
self.sr = SceneRelation(fpn_ch_list[-1], sr_ch_list, mid_ch)
in_channels=fsr_out_channels, out_channels=decoder_out_channels)
self.cls_head = nn.Sequential(
DefaultConvBlock(decoder_out_channels, num_classes, 1),
nn.UpsamplingBilinear2D(scale_factor=4))
def forward(self, x):
feat_list = self.en(x)
fpn_feat_list = self.fpn(feat_list)
if self.scene_relation:
c5 = feat_list[-1]
c6 = self.gap(c5)
refined_fpn_feat_list = self.sr(c6, fpn_feat_list)
else:
refined_fpn_feat_list = fpn_feat_list
final_feat = self.decoder(refined_fpn_feat_list)
cls_pred = self.cls_pred_conv(final_feat)
cls_pred = self.upsample4x_op(cls_pred)
return [cls_pred]
feature_list = self.encoder(x)
fpn_feature_list = self.fpn(feature_list)
scene_feature = self.gap(feature_list[-1])
refined_feature_list = self.fsr(scene_feature, fpn_feature_list)
feature = self.decoder(refined_feature_list)
logit = self.cls_head(feature)
return [logit]

@ -53,10 +53,15 @@ class TestFarSegModel(TestSegModel):
def set_specs(self):
self.specs = [
dict(), dict(num_classes=20), dict(pretrained_encoder=False),
dict(in_channels=10)
dict(), dict(
in_channels=6, num_classes=10), dict(
backbone='resnet18', backbone_pretrained=False), dict(
fpn_out_channels=128,
fsr_out_channels=64,
decoder_out_channels=32), dict(scale_aware_proj=False)
]
def set_targets(self):
self.targets = [[self.get_zeros_array(16)], [self.get_zeros_array(20)],
self.targets = [[self.get_zeros_array(16)], [self.get_zeros_array(10)],
[self.get_zeros_array(16)], [self.get_zeros_array(16)],
[self.get_zeros_array(16)]]

Loading…
Cancel
Save