|
|
@ -36,10 +36,10 @@ class SELayer(nn.Layer): |
|
|
|
nn.Sigmoid(), ) |
|
|
|
nn.Sigmoid(), ) |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
def forward(self, x): |
|
|
|
b, c, _, _ = x.shape |
|
|
|
b, c, _, _ = paddle.shape(x) |
|
|
|
y = self.avg_pool(x).reshape((b, c)) |
|
|
|
y = self.avg_pool(x).reshape((b, c)) |
|
|
|
y = self.fc(y).reshape((b, c, 1, 1)) |
|
|
|
y = self.fc(y).reshape((b, c, 1, 1)) |
|
|
|
return x * paddle.expand(y, shape=x.shape) |
|
|
|
return x * paddle.expand(y, shape=paddle.shape(x)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HS(nn.Layer): |
|
|
|
class HS(nn.Layer): |
|
|
@ -85,7 +85,7 @@ class Conv(nn.Sequential): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ShuffleLayer(x, groups): |
|
|
|
def ShuffleLayer(x, groups): |
|
|
|
batchsize, num_channels, height, width = x.shape |
|
|
|
batchsize, num_channels, height, width = paddle.shape(x) |
|
|
|
channels_per_group = num_channels // groups |
|
|
|
channels_per_group = num_channels // groups |
|
|
|
# reshape |
|
|
|
# reshape |
|
|
|
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
|
|
|
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
|
|
@ -97,7 +97,7 @@ def ShuffleLayer(x, groups): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def ShuffleLayerTrans(x, groups): |
|
|
|
def ShuffleLayerTrans(x, groups): |
|
|
|
batchsize, num_channels, height, width = x.shape |
|
|
|
batchsize, num_channels, height, width = paddle.shape(x) |
|
|
|
channels_per_group = num_channels // groups |
|
|
|
channels_per_group = num_channels // groups |
|
|
|
# reshape |
|
|
|
# reshape |
|
|
|
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
|
|
|
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
|
|
@ -188,7 +188,7 @@ class CondenseSFR(nn.Layer): |
|
|
|
x = self.activation(x) |
|
|
|
x = self.activation(x) |
|
|
|
x = ShuffleLayerTrans(x, self.groups) |
|
|
|
x = ShuffleLayerTrans(x, self.groups) |
|
|
|
x = self.conv(x) # SIZE: N, C, H, W |
|
|
|
x = self.conv(x) # SIZE: N, C, H, W |
|
|
|
N, C, H, W = x.shape |
|
|
|
N, C, H, W = paddle.shape(x) |
|
|
|
x = x.reshape((N, C, H * W)) |
|
|
|
x = x.reshape((N, C, H * W)) |
|
|
|
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
|
|
|
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
|
|
|
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
|
|
|
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
|
|
@ -374,8 +374,8 @@ class CondenseNetV2(nn.Layer): |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
def forward(self, x): |
|
|
|
features = self.features(x) |
|
|
|
features = self.features(x) |
|
|
|
out = features.reshape((features.shape[0], features.shape[1] * |
|
|
|
shape = paddle.shape(features) |
|
|
|
features.shape[2] * features.shape[3])) |
|
|
|
out = features.reshape((shape[0], shape[1] * shape[2] * shape[3])) |
|
|
|
out = self.fc(out) |
|
|
|
out = self.fc(out) |
|
|
|
out = self.fc_act(out) |
|
|
|
out = self.fc_act(out) |
|
|
|
|
|
|
|
|
|
|
|