|
|
|
@ -8,35 +8,35 @@ Linux GPU/CPU 基础训练推理测试的主程序为`test_train_inference_pytho |
|
|
|
|
|
|
|
|
|
| 任务类别 | 模型名称 | 单机单卡 | 单机多卡 | 参考预测精度 | |
|
|
|
|
| :----: | :----: | :----: | :----: | :----: | |
|
|
|
|
| 变化检测 | BIT | 正常训练 | 正常训练 | IoU=71.02% | |
|
|
|
|
| 变化检测 | CDNet | 正常训练 | 正常训练 | IoU=56.02% | |
|
|
|
|
| 变化检测 | ChangeFormer | 正常训练 | 正常训练 | IoU=61.65% | |
|
|
|
|
| 变化检测 | DSAMNet | 正常训练 | 正常训练 | IoU=69.76% | |
|
|
|
|
| 变化检测 | DSIFN | 正常训练 | 正常训练 | IoU=72.88% | |
|
|
|
|
| 变化检测 | SNUNet | 正常训练 | 正常训练 | IoU=68.46% | |
|
|
|
|
| 变化检测 | STANet | 正常训练 | 正常训练 | IoU=65.11% | |
|
|
|
|
| 变化检测 | FC-EF | 正常训练 | 正常训练 | IoU=64.22% | |
|
|
|
|
| 变化检测 | FC-Siam-conc | 正常训练 | 正常训练 | IoU=65.79% | |
|
|
|
|
| 变化检测 | FC-Siam-diff | 正常训练 | 正常训练 | IoU=61.23% | |
|
|
|
|
| 变化检测 | FCCDN | 正常训练 | 正常训练 | IoU=24.42% | |
|
|
|
|
| 场景分类 | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)=60.42% | |
|
|
|
|
| 场景分类 | HRNet | 正常训练 | 正常训练 | Acc(top1)=99.37% | |
|
|
|
|
| 场景分类 | MobileNetV3 | 正常训练 | 正常训练 | Acc(top1)=99.58% | |
|
|
|
|
| 场景分类 | ResNet50-vd | 正常训练 | 正常训练 | Acc(top1)=99.26% | |
|
|
|
|
| 图像复原 | DRN | 正常训练 | 正常训练 | PSNR=24.23 | |
|
|
|
|
| 图像复原 | ESRGAN | 正常训练 | 正常训练 | PSNR=21.30 | |
|
|
|
|
| 图像复原 | LESRCNN | 正常训练 | 正常训练 | PSNR=23.18 | |
|
|
|
|
| 目标检测 | Faster R-CNN | 正常训练 | 正常训练 | mAP=46.99% | |
|
|
|
|
| 目标检测 | PP-YOLO | 正常训练 | 正常训练 | mAP=56.02% | |
|
|
|
|
| 目标检测 | PP-YOLO Tiny | 正常训练 | 正常训练 | mAP=44.27% | |
|
|
|
|
| 目标检测 | PP-YOLOv2 | 正常训练 | 正常训练 | mAP=59.37% | |
|
|
|
|
| 目标检测 | YOLOv3 | 正常训练 | 正常训练 | mAP=47.33% | |
|
|
|
|
| 图像分割 | BiSeNet V2 | 正常训练 | 正常训练 | mIoU=70.20 | |
|
|
|
|
| 图像分割 | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=64.59% | |
|
|
|
|
| 图像分割 | FarSeg | 正常训练 | 正常训练 | mIoU=50.45% | |
|
|
|
|
| 图像分割 | Fast-SCNN | 正常训练 | 正常训练 | mIoU=48.97% | |
|
|
|
|
| 图像分割 | HRNet | 正常训练 | 正常训练 | mIoU=33.49% | |
|
|
|
|
| 图像分割 | UNet | 正常训练 | 正常训练 | mIoU=72.64% | |
|
|
|
|
| 变化检测 | BIT | 正常训练 | 正常训练 | IoU=71.01% | |
|
|
|
|
| 变化检测 | CDNet | 正常训练 | 正常训练 | IoU=55.10% | |
|
|
|
|
| 变化检测 | ChangeFormer | 正常训练 | 正常训练 | IoU=61.09% | |
|
|
|
|
| 变化检测 | DSAMNet | 正常训练 | 正常训练 | IoU=69.02% | |
|
|
|
|
| 变化检测 | DSIFN | 正常训练 | 正常训练 | IoU=72.36% | |
|
|
|
|
| 变化检测 | FC-EF | 正常训练 | 正常训练 | IoU=57.18% | |
|
|
|
|
| 变化检测 | FC-Siam-conc | 正常训练 | 正常训练 | IoU=52.82% | |
|
|
|
|
| 变化检测 | FC-Siam-diff | 正常训练 | 正常训练 | IoU=58.30% | |
|
|
|
|
| 变化检测 | FCCDN | 正常训练 | 正常训练 | IoU=23.94% | |
|
|
|
|
| 变化检测 | SNUNet | 正常训练 | 正常训练 | IoU=67.66% | |
|
|
|
|
| 变化检测 | STANet | 正常训练 | 正常训练 | IoU=67.23% | |
|
|
|
|
| 场景分类 | CondenseNet V2 | 正常训练 | 正常训练 | Acc(top1)=60.53% | |
|
|
|
|
| 场景分类 | HRNet | 正常训练 | 正常训练 | Acc(top1)=99.47% | |
|
|
|
|
| 场景分类 | MobileNetV3 | 正常训练 | 正常训练 | Acc(top1)=99.57% | |
|
|
|
|
| 场景分类 | ResNet50-vd | 正常训练 | 正常训练 | Acc(top1)=99.37% | |
|
|
|
|
| 目标检测 | Faster R-CNN | 正常训练 | 正常训练 | 暂无稳定精度 | |
|
|
|
|
| 目标检测 | PP-YOLO | 正常训练 | 正常训练 | 暂无稳定精度 | |
|
|
|
|
| 目标检测 | PP-YOLO Tiny | 正常训练 | 正常训练 | 暂无稳定精度 | |
|
|
|
|
| 目标检测 | PP-YOLOv2 | 正常训练 | 正常训练 | 暂无稳定精度 | |
|
|
|
|
| 目标检测 | YOLOv3 | 正常训练 | 正常训练 | 暂无稳定精度 | |
|
|
|
|
| 图像复原 | DRN | 正常训练 | 正常训练 | PSNR=24.14 | |
|
|
|
|
| 图像复原 | ESRGAN | 正常训练 | 正常训练 | PSNR=21.25 | |
|
|
|
|
| 图像复原 | LESRCNN | 正常训练 | 正常训练 | PSNR=22.96 | |
|
|
|
|
| 图像分割 | BiSeNet V2 | 正常训练 | 正常训练 | mIoU=70.52% | |
|
|
|
|
| 图像分割 | DeepLab V3+ | 正常训练 | 正常训练 | mIoU=64.41% | |
|
|
|
|
| 图像分割 | FarSeg | 正常训练 | 正常训练 | mIoU=50.74% | |
|
|
|
|
| 图像分割 | Fast-SCNN | 正常训练 | 正常训练 | mIoU=49.27% | |
|
|
|
|
| 图像分割 | HRNet | 正常训练 | 正常训练 | mIoU=33.03% | |
|
|
|
|
| 图像分割 | UNet | 正常训练 | 正常训练 | mIoU=72.58% | |
|
|
|
|
|
|
|
|
|
*注:参考预测精度为whole_train_whole_infer模式下单卡训练汇报的精度数据。* |
|
|
|
|
|
|
|
|
|