@ -1,32 +1,136 @@ |
||||
# PaddleRS |
||||
|
||||
PaddleRS是基于飞桨的遥感影像处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥感任务。 |
||||
|
||||
### 遥感数据处理 |
||||
- [ ] 多光谱、高光谱、SAR、无人机RGBD |
||||
- [ ] 数据切分、合并、通道提取等功能 |
||||
- [ ] 支持任意通道数据增强策略 |
||||
- [ ] 支持多种遥感影像格式 |
||||
- 遥感影像的格式多种多样,不同传感器产生的数据格式也可能不同。PaddleRS现已兼容6+种格式图片读取:`tif`, `png`, `jpeg`, `bmp`, `img`, `npy`. |
||||
- geojson格式的分割标签数据. |
||||
|
||||
### 算法模型 |
||||
- [ ] 分类(ResNet,MobileNet,HRNet) |
||||
- [ ] 检测(PP-YOLO,Faster-RCNN,S2ANet) |
||||
- [ ] 分割(DeepLabV3P、OCRNet、UNet) |
||||
- [ ] 变化检测(TBD) |
||||
- [ ] 特有遥感模型(FarSeg) |
||||
|
||||
### 工具箱 |
||||
- [ ] 数据分块 |
||||
- [ ] 滑框分割/变化检测 |
||||
- [ ] 栅格raster转矢量shp |
||||
|
||||
### Benchmark |
||||
- [ ] 实现repo模型,至少持平往期遥感比赛精度 |
||||
|
||||
### 高精度预训练模型 |
||||
- [ ] 构建各场景的预训练模型,如建筑物、河流、植被等 |
||||
|
||||
### 应用示例 |
||||
- [ ] 场景范例库,指导用户完成模型的构建,完成模型落地 |
||||
<div align="center"> |
||||
|
||||
<p align="center"> |
||||
<img src="./docs/images/logo.png" align="middle" width = "500" /> |
||||
</p> |
||||
|
||||
**飞桨高性能图像分割开发套件,端到端地完成从训练到部署的全流程图像分割应用。** |
||||
|
||||
[![Build Status](https://travis-ci.org/PaddlePaddle/PaddleSeg.svg?branch=release/2.1)](https://travis-ci.org/PaddlePaddle/PaddleSeg) |
||||
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) |
||||
[![Version](https://img.shields.io/github/release/PaddlePaddle/PaddleSeg.svg)](https://github.com/PaddlePaddle/PaddleSeg/releases) |
||||
![python version](https://img.shields.io/badge/python-3.6+-orange.svg) |
||||
![support os](https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-yellow.svg) |
||||
</div> |
||||
|
||||
|
||||
|
||||
## 最新动态 <img src="./docs/images/seg_news_icon.png" width="40"/> |
||||
|
||||
* [2022-03-30] PaddleRS alpha版本发布!详细发版信息请参考[Release Note](https://github.com/PaddleCV-SIG)。 |
||||
|
||||
|
||||
## 简介 |
||||
PaddleRS是xxx、xxx、xxx等遥感科研院所共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥感任务,帮助开发者更便捷地完成从训练到部署全流程遥感图像图像分割应用。 |
||||
|
||||
|
||||
<div align="center"> |
||||
<img src="docs/images/whole_image.png" width = "2000" /> |
||||
</div> |
||||
|
||||
|
||||
---------------- |
||||
## 特性 <img src="./docs/images/feature.png" width="30"/> |
||||
|
||||
|
||||
* <img src="./docs/images/f1.png" width="20"/> **特有的遥感数据处理模块**:针对遥感行业数据特点,提供了大尺幅数据切片与拼接,支持读取`tif`, `png`, `jpeg`, `bmp`, `img`, `npy`. |
||||
等格式,支持地理信息保存和超分辨率。 |
||||
|
||||
* <img src="./docs/images/f2.png" width="20"/> **覆盖任务广**:支持目标检测、图像分割、变化检测、参数反演等多种任务 |
||||
|
||||
* <img src="./docs/images/f3.png" width="20"/> **高性能**:支持多进程异步I/O、多卡并行训练、评估等加速策略,结合飞桨核心框架的显存优化功能,可大幅度减少分割模型的训练开销,让开发者更低成本、更高效地完成图像遥感图像的开发和训练。 |
||||
|
||||
---------- |
||||
|
||||
## 技术交流 <img src="./docs/images/chat.png" width="30"/> |
||||
|
||||
* 如果你发现任何PaddleSeg存在的问题或者是建议, 欢迎通过[GitHub Issues](https://github.com/PaddlePaddle/PaddleSeg/issues)给我们提issues。 |
||||
* 欢迎加入PaddleRSeg 微信群 |
||||
<div align="center"> |
||||
<img src="./docs/images/wechat.png" width = "200" /> |
||||
</div> |
||||
|
||||
|
||||
|
||||
|
||||
## 使用教程 <img src="./docs/images/teach.png" width="30"/> |
||||
|
||||
* [环境安装](./docs/install_cn.md) |
||||
* [快速上手PaddleRS](./docs/whole_process_cn.md) |
||||
* 准备数据集 |
||||
* [数据集说明](./docs/data/marker/marker_cn.md) |
||||
* [智能标注工具EISeg](./docs/data/transform/transform_cn.md) |
||||
|
||||
* [模型训练与评估](/docs/train/train_cn.md) |
||||
* [预测与可视化](./docs/predict/predict_cn.md) |
||||
|
||||
* 模型导出 |
||||
* [导出预测模型](./docs/model_export_cn.md) |
||||
* [导出ONNX模型](./docs/model_export_onnx_cn.md) |
||||
|
||||
* 模型压缩 |
||||
* [量化](./docs/slim/quant/quant_cn.md) |
||||
* [蒸馏](./docs/slim/distill/distill_cn.md) |
||||
* [裁剪](./docs/slim/prune/prune_cn.md) |
||||
|
||||
* 模型部署 |
||||
* [Paddle Inference部署(Python)](./docs/deployment/inference/python_inference_cn.md) |
||||
* [Paddle Inference部署(C++)](./docs/deployment/inference/cpp_inference_cn.md) |
||||
* [Paddle Lite部署](./docs/deployment/lite/lite_cn.md) |
||||
|
||||
|
||||
|
||||
* API使用教程 |
||||
* [API文档说明](./docs/apis/README_CN.md) |
||||
* [API应用案例](./docs/api_example_cn.md) |
||||
* 重要模块说明 |
||||
* [数据增强](./docs/module/data/data_cn.md) |
||||
* [Loss说明](./docs/module/loss/losses_cn.md) |
||||
* 二次开发教程 |
||||
* [配置文件详解](./docs/design/use/use_cn.md) |
||||
* [如何创造自己的模型](./docs/design/create/add_new_model_cn.md) |
||||
* 模型贡献 |
||||
* [提交PR说明](./docs/pr/pr/pr_cn.md) |
||||
* [模型PR规范](./docs/pr/pr/style_cn.md) |
||||
|
||||
* [常见问题汇总](./docs/faq/faq/faq_cn.md) |
||||
|
||||
## 实践案例 <img src="./docs/images/anli.png" width="20"/> |
||||
|
||||
- [地块分割](./EISeg) |
||||
- [舰船检测](./contrib/Matting) |
||||
- [农作物增长预测](./contrib/PP-HumanSeg) |
||||
- [城区变化检测](./contrib/CityscapesSOTA) |
||||
|
||||
|
||||
|
||||
## 许可证书 |
||||
本项目的发布受Apache 2.0 license许可认证。 |
||||
|
||||
## 贡献说明 <img src="./docs/images/love.png" width="20"/> |
||||
本项目的发布受Apache 2.0 license许可认证。 |
||||
|
||||
|
||||
## 学术引用 <img src="./docs/images/yinyong.png" width="30"/> |
||||
|
||||
如果我们的项目在学术上帮助到你,请考虑以下引用: |
||||
|
||||
```latex |
||||
@misc{liu2021paddleseg, |
||||
title={PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation}, |
||||
author={Yi Liu and Lutao Chu and Guowei Chen and Zewu Wu and Zeyu Chen and Baohua Lai and Yuying Hao}, |
||||
year={2021}, |
||||
eprint={2101.06175}, |
||||
archivePrefix={arXiv}, |
||||
primaryClass={cs.CV} |
||||
} |
||||
|
||||
@misc{paddleseg2019, |
||||
title={PaddleSeg, End-to-end image segmentation kit based on PaddlePaddle}, |
||||
author={PaddlePaddle Authors}, |
||||
howpublished = {\url{https://github.com/PaddlePaddle/PaddleSeg}}, |
||||
year={2019} |
||||
} |
||||
``` |
||||
|
After Width: | Height: | Size: 7.4 KiB |
After Width: | Height: | Size: 3.9 KiB |
After Width: | Height: | Size: 1.7 KiB |
After Width: | Height: | Size: 3.9 KiB |
After Width: | Height: | Size: 8.1 KiB |
After Width: | Height: | Size: 5.9 KiB |
After Width: | Height: | Size: 98 KiB |
After Width: | Height: | Size: 110 KiB |
After Width: | Height: | Size: 10 KiB |
After Width: | Height: | Size: 116 KiB |
After Width: | Height: | Size: 9.0 KiB |
After Width: | Height: | Size: 3.6 KiB |