parent
91c64d923a
commit
a8f1525e7a
3 changed files with 435 additions and 2 deletions
@ -0,0 +1,394 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
import paddle.nn.functional as F |
||||
from paddle.nn.initializer import Normal |
||||
|
||||
|
||||
from .backbones import resnet |
||||
from .layers import Conv3x3, Conv1x1, get_norm_layer, Identity |
||||
from .param_init import KaimingInitMixin |
||||
|
||||
|
||||
class BIT(nn.Layer): |
||||
""" |
||||
The BIT implementation based on PaddlePaddle. |
||||
|
||||
The original article refers to |
||||
H. Chen, et al., "Remote Sensing Image Change Detection With Transformers" |
||||
(https://arxiv.org/abs/2103.00208) |
||||
|
||||
This implementation adopts pretrained encoders, as opposed to the original work where weights are randomly initialized. |
||||
|
||||
Args: |
||||
in_channels (int): The number of bands of the input images. |
||||
num_classes (int): The number of target classes. |
||||
backbone (str, optional): The ResNet architecture that is used as the backbone. Currently, only 'resnet18' and |
||||
'resnet34' are supported. Default: 'resnet18'. |
||||
n_stages (int, optional): The number of ResNet stages used in the backbone, which should be a value in {3,4,5}. |
||||
Default: 4. |
||||
use_tokenizer (bool, optional): Use a tokenizer or not. Default: True. |
||||
token_len (int, optional): The length of input tokens. Default: 4. |
||||
pool_mode (str, optional): The pooling strategy to obtain input tokens when `use_tokenizer` is set to False. 'max' |
||||
for global max pooling and 'avg' for global average pooling. Default: 'max'. |
||||
pool_size (int, optional): The height and width of the pooled feature maps when `use_tokenizer` is set to False. |
||||
Default: 2. |
||||
enc_with_pos (bool, optional): Whether to add leanred positional embedding to the input feature sequence of the |
||||
encoder. Default: True. |
||||
enc_depth (int, optional): The number of attention blocks used in the encoder. Default: 1 |
||||
enc_head_dim (int, optional): The embedding dimension of each encoder head. Default: 64. |
||||
dec_depth (int, optional): The number of attention blocks used in the decoder. Default: 8. |
||||
dec_head_dim (int, optional): The embedding dimension of each decoder head. Default: 8. |
||||
|
||||
Raises: |
||||
ValueError: When an unsupported backbone type is specified, or the number of backbone stages is not 3, 4, or 5. |
||||
""" |
||||
def __init__( |
||||
self, in_channels, num_classes, |
||||
backbone='resnet18', n_stages=4, |
||||
use_tokenizer=True, token_len=4, |
||||
pool_mode='max', pool_size=2, |
||||
enc_with_pos=True, |
||||
enc_depth=1, enc_head_dim=64, |
||||
dec_depth=8, dec_head_dim=8, |
||||
**backbone_kwargs |
||||
): |
||||
super().__init__() |
||||
|
||||
# TODO: reduce hard-coded parameters |
||||
DIM = 32 |
||||
MLP_DIM = 2*DIM |
||||
EBD_DIM = DIM |
||||
|
||||
self.backbone = Backbone(in_channels, EBD_DIM, arch=backbone, n_stages=n_stages, **backbone_kwargs) |
||||
|
||||
self.use_tokenizer = use_tokenizer |
||||
if not use_tokenizer: |
||||
# If a tokenzier is not to be used,then downsample the feature maps. |
||||
self.pool_size = pool_size |
||||
self.pool_mode = pool_mode |
||||
self.token_len = pool_size * pool_size |
||||
else: |
||||
self.conv_att = Conv1x1(32, token_len, bias=False) |
||||
self.token_len = token_len |
||||
|
||||
self.enc_with_pos = enc_with_pos |
||||
if enc_with_pos: |
||||
self.enc_pos_embedding = self.create_parameter( |
||||
shape=(1,self.token_len*2,EBD_DIM), |
||||
default_initializer=Normal() |
||||
) |
||||
|
||||
self.enc_depth = enc_depth |
||||
self.dec_depth = dec_depth |
||||
self.enc_head_dim = enc_head_dim |
||||
self.dec_head_dim = dec_head_dim |
||||
|
||||
self.encoder = TransformerEncoder( |
||||
dim=DIM, |
||||
depth=enc_depth, |
||||
n_heads=8, |
||||
head_dim=enc_head_dim, |
||||
mlp_dim=MLP_DIM, |
||||
dropout_rate=0. |
||||
) |
||||
self.decoder = TransformerDecoder( |
||||
dim=DIM, |
||||
depth=dec_depth, |
||||
n_heads=8, |
||||
head_dim=dec_head_dim, |
||||
mlp_dim=MLP_DIM, |
||||
dropout_rate=0., |
||||
apply_softmax=True |
||||
) |
||||
|
||||
self.upsample = nn.Upsample(scale_factor=4, mode='bilinear') |
||||
self.conv_out = nn.Sequential( |
||||
Conv3x3(EBD_DIM, EBD_DIM, norm=True, act=True), |
||||
Conv3x3(EBD_DIM, num_classes) |
||||
) |
||||
|
||||
def _get_semantic_tokens(self, x): |
||||
b, c = x.shape[:2] |
||||
att_map = self.conv_att(x) |
||||
att_map = att_map.reshape((b,self.token_len,1,-1)) |
||||
att_map = F.softmax(att_map, axis=-1) |
||||
x = x.reshape((b,1,c,-1)) |
||||
tokens = (x*att_map).sum(-1) |
||||
return tokens |
||||
|
||||
def _get_reshaped_tokens(self, x): |
||||
if self.pool_mode == 'max': |
||||
x = F.adaptive_max_pool2d(x, (self.pool_size, self.pool_size)) |
||||
elif self.pool_mode == 'avg': |
||||
x = F.adaptive_avg_pool2d(x, (self.pool_size, self.pool_size)) |
||||
else: |
||||
x = x |
||||
tokens = x.transpose((0,2,3,1)).flatten(1,2) |
||||
return tokens |
||||
|
||||
def encode(self, x): |
||||
if self.enc_with_pos: |
||||
x += self.enc_pos_embedding |
||||
x = self.encoder(x) |
||||
return x |
||||
|
||||
def decode(self, x, m): |
||||
b, c, h, w = x.shape |
||||
x = x.transpose((0,2,3,1)).flatten(1,2) |
||||
x = self.decoder(x, m) |
||||
x = x.transpose((0,2,1)).reshape((b,c,h,w)) |
||||
return x |
||||
|
||||
def forward(self, t1, t2): |
||||
# Extract features via shared backbone. |
||||
x1 = self.backbone(t1) |
||||
x2 = self.backbone(t2) |
||||
|
||||
# Tokenization |
||||
if self.use_tokenizer: |
||||
token1 = self._get_semantic_tokens(x1) |
||||
token2 = self._get_semantic_tokens(x2) |
||||
else: |
||||
token1 = self._get_reshaped_tokens(x1) |
||||
token2 = self._get_reshaped_tokens(x2) |
||||
|
||||
# Transformer encoder forward |
||||
token = paddle.concat([token1, token2], axis=1) |
||||
token = self.encode(token) |
||||
token1, token2 = paddle.chunk(token, 2, axis=1) |
||||
|
||||
# Transformer decoder forward |
||||
y1 = self.decode(x1, token1) |
||||
y2 = self.decode(x2, token2) |
||||
|
||||
# Feature differencing |
||||
y = paddle.abs(y1 - y2) |
||||
y = self.upsample(y) |
||||
|
||||
# Classifier forward |
||||
pred = self.conv_out(y) |
||||
return pred, |
||||
|
||||
def init_weight(self): |
||||
# Use the default initialization method. |
||||
pass |
||||
|
||||
|
||||
class Residual(nn.Layer): |
||||
def __init__(self, fn): |
||||
super().__init__() |
||||
self.fn = fn |
||||
|
||||
def forward(self, x, **kwargs): |
||||
return self.fn(x, **kwargs) + x |
||||
|
||||
|
||||
class Residual2(nn.Layer): |
||||
def __init__(self, fn): |
||||
super().__init__() |
||||
self.fn = fn |
||||
|
||||
def forward(self, x1, x2, **kwargs): |
||||
return self.fn(x1, x2, **kwargs) + x1 |
||||
|
||||
|
||||
class PreNorm(nn.Layer): |
||||
def __init__(self, dim, fn): |
||||
super().__init__() |
||||
self.norm = nn.LayerNorm(dim) |
||||
self.fn = fn |
||||
|
||||
def forward(self, x, **kwargs): |
||||
return self.fn(self.norm(x), **kwargs) |
||||
|
||||
|
||||
class PreNorm2(nn.Layer): |
||||
def __init__(self, dim, fn): |
||||
super().__init__() |
||||
self.norm = nn.LayerNorm(dim) |
||||
self.fn = fn |
||||
|
||||
def forward(self, x1, x2, **kwargs): |
||||
return self.fn(self.norm(x1), self.norm(x2), **kwargs) |
||||
|
||||
|
||||
class FeedForward(nn.Sequential): |
||||
def __init__(self, dim, hidden_dim, dropout_rate=0.): |
||||
super().__init__( |
||||
nn.Linear(dim, hidden_dim), |
||||
nn.GELU(), |
||||
nn.Dropout(dropout_rate), |
||||
nn.Linear(hidden_dim, dim), |
||||
nn.Dropout(dropout_rate) |
||||
) |
||||
|
||||
|
||||
class CrossAttention(nn.Layer): |
||||
def __init__(self, dim, n_heads=8, head_dim=64, dropout_rate=0., apply_softmax=True): |
||||
super().__init__() |
||||
|
||||
inner_dim = head_dim * n_heads |
||||
self.n_heads = n_heads |
||||
self.scale = dim ** -0.5 |
||||
|
||||
self.apply_softmax = apply_softmax |
||||
|
||||
self.fc_q = nn.Linear(dim, inner_dim, bias_attr=False) |
||||
self.fc_k = nn.Linear(dim, inner_dim, bias_attr=False) |
||||
self.fc_v = nn.Linear(dim, inner_dim, bias_attr=False) |
||||
|
||||
self.fc_out = nn.Sequential( |
||||
nn.Linear(inner_dim, dim), |
||||
nn.Dropout(dropout_rate) |
||||
) |
||||
|
||||
def forward(self, x, ref): |
||||
b, n = x.shape[:2] |
||||
h = self.n_heads |
||||
|
||||
q = self.fc_q(x) |
||||
k = self.fc_k(ref) |
||||
v = self.fc_v(ref) |
||||
|
||||
q = q.reshape((b,n,h,-1)).transpose((0,2,1,3)) |
||||
k = k.reshape((b,ref.shape[1],h,-1)).transpose((0,2,1,3)) |
||||
v = v.reshape((b,ref.shape[1],h,-1)).transpose((0,2,1,3)) |
||||
|
||||
mult = paddle.matmul(q, k, transpose_y=True) * self.scale |
||||
|
||||
if self.apply_softmax: |
||||
mult = F.softmax(mult, axis=-1) |
||||
|
||||
out = paddle.matmul(mult, v) |
||||
out = out.transpose((0,2,1,3)).flatten(2) |
||||
return self.fc_out(out) |
||||
|
||||
|
||||
class SelfAttention(CrossAttention): |
||||
def forward(self, x): |
||||
return super().forward(x, x) |
||||
|
||||
|
||||
class TransformerEncoder(nn.Layer): |
||||
def __init__(self, dim, depth, n_heads, head_dim, mlp_dim, dropout_rate): |
||||
super().__init__() |
||||
self.layers = nn.LayerList([]) |
||||
for _ in range(depth): |
||||
self.layers.append(nn.LayerList([ |
||||
Residual(PreNorm(dim, SelfAttention(dim, n_heads, head_dim, dropout_rate))), |
||||
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate))) |
||||
])) |
||||
|
||||
def forward(self, x): |
||||
for att, ff in self.layers: |
||||
x = att(x) |
||||
x = ff(x) |
||||
return x |
||||
|
||||
|
||||
class TransformerDecoder(nn.Layer): |
||||
def __init__(self, dim, depth, n_heads, head_dim, mlp_dim, dropout_rate, apply_softmax=True): |
||||
super().__init__() |
||||
self.layers = nn.LayerList([]) |
||||
for _ in range(depth): |
||||
self.layers.append(nn.LayerList([ |
||||
Residual2(PreNorm2(dim, CrossAttention(dim, n_heads, head_dim, dropout_rate, apply_softmax))), |
||||
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate))) |
||||
])) |
||||
|
||||
def forward(self, x, m): |
||||
for att, ff in self.layers: |
||||
x = att(x, m) |
||||
x = ff(x) |
||||
return x |
||||
|
||||
|
||||
class Backbone(nn.Layer, KaimingInitMixin): |
||||
def __init__( |
||||
self, |
||||
in_ch, out_ch=32, |
||||
arch='resnet18', |
||||
pretrained=True, |
||||
n_stages=5 |
||||
): |
||||
super().__init__() |
||||
|
||||
expand = 1 |
||||
strides = (2,1,2,1,1) |
||||
if arch == 'resnet18': |
||||
self.resnet = resnet.resnet18(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) |
||||
elif arch == 'resnet34': |
||||
self.resnet = resnet.resnet34(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) |
||||
else: |
||||
raise ValueError |
||||
|
||||
self.n_stages = n_stages |
||||
|
||||
if self.n_stages == 5: |
||||
itm_ch = 512 * expand |
||||
elif self.n_stages == 4: |
||||
itm_ch = 256 * expand |
||||
elif self.n_stages == 3: |
||||
itm_ch = 128 * expand |
||||
else: |
||||
raise ValueError |
||||
|
||||
self.upsample = nn.Upsample(scale_factor=2) |
||||
self.conv_out = Conv3x3(itm_ch, out_ch) |
||||
|
||||
self._trim_resnet() |
||||
|
||||
if in_ch != 3: |
||||
self.resnet.conv1 = nn.Conv2D( |
||||
in_ch, |
||||
64, |
||||
kernel_size=7, |
||||
stride=2, |
||||
padding=3, |
||||
bias_attr=False |
||||
) |
||||
|
||||
if not pretrained: |
||||
self.init_weight() |
||||
|
||||
def forward(self, x): |
||||
y = self.resnet.conv1(x) |
||||
y = self.resnet.bn1(y) |
||||
y = self.resnet.relu(y) |
||||
y = self.resnet.maxpool(y) |
||||
|
||||
y = self.resnet.layer1(y) |
||||
y = self.resnet.layer2(y) |
||||
y = self.resnet.layer3(y) |
||||
y = self.resnet.layer4(y) |
||||
|
||||
y = self.upsample(y) |
||||
|
||||
return self.conv_out(y) |
||||
|
||||
def _trim_resnet(self): |
||||
if self.n_stages > 5: |
||||
raise ValueError |
||||
|
||||
if self.n_stages < 5: |
||||
self.resnet.layer4 = Identity() |
||||
|
||||
if self.n_stages <= 3: |
||||
self.resnet.layer3 = Identity() |
||||
|
||||
self.resnet.avgpool = Identity() |
||||
self.resnet.fc = Identity() |
Loading…
Reference in new issue