parent
d51b683942
commit
a895234700
8 changed files with 644 additions and 464 deletions
@ -1,442 +1,442 @@ |
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||||
# |
# |
||||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||||
# you may not use this file except in compliance with the License. |
# you may not use this file except in compliance with the License. |
||||||
# You may obtain a copy of the License at |
# You may obtain a copy of the License at |
||||||
# |
# |
||||||
# http://www.apache.org/licenses/LICENSE-2.0 |
# http://www.apache.org/licenses/LICENSE-2.0 |
||||||
# |
# |
||||||
# Unless required by applicable law or agreed to in writing, software |
# Unless required by applicable law or agreed to in writing, software |
||||||
# distributed under the License is distributed on an "AS IS" BASIS, |
# distributed under the License is distributed on an "AS IS" BASIS, |
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||||
# See the License for the specific language governing permissions and |
# See the License for the specific language governing permissions and |
||||||
# limitations under the License. |
# limitations under the License. |
||||||
""" |
""" |
||||||
This code is based on https://github.com/AgentMaker/Paddle-Image-Models |
This code is based on https://github.com/AgentMaker/Paddle-Image-Models |
||||||
Ths copyright of AgentMaker/Paddle-Image-Models is as follows: |
Ths copyright of AgentMaker/Paddle-Image-Models is as follows: |
||||||
Apache License [see LICENSE for details] |
Apache License [see LICENSE for details] |
||||||
""" |
""" |
||||||
|
|
||||||
import paddle |
import paddle |
||||||
import paddle.nn as nn |
import paddle.nn as nn |
||||||
|
|
||||||
__all__ = ["CondenseNetV2_a", "CondenseNetV2_b", "CondenseNetV2_c"] |
__all__ = ["CondenseNetV2_A", "CondenseNetV2_B", "CondenseNetV2_C"] |
||||||
|
|
||||||
|
|
||||||
class SELayer(nn.Layer): |
class SELayer(nn.Layer): |
||||||
def __init__(self, inplanes, reduction=16): |
def __init__(self, inplanes, reduction=16): |
||||||
super(SELayer, self).__init__() |
super(SELayer, self).__init__() |
||||||
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
||||||
self.fc = nn.Sequential( |
self.fc = nn.Sequential( |
||||||
nn.Linear( |
nn.Linear( |
||||||
inplanes, inplanes // reduction, bias_attr=False), |
inplanes, inplanes // reduction, bias_attr=False), |
||||||
nn.ReLU(), |
nn.ReLU(), |
||||||
nn.Linear( |
nn.Linear( |
||||||
inplanes // reduction, inplanes, bias_attr=False), |
inplanes // reduction, inplanes, bias_attr=False), |
||||||
nn.Sigmoid(), ) |
nn.Sigmoid(), ) |
||||||
|
|
||||||
def forward(self, x): |
def forward(self, x): |
||||||
b, c, _, _ = x.shape |
b, c, _, _ = x.shape |
||||||
y = self.avg_pool(x).reshape((b, c)) |
y = self.avg_pool(x).reshape((b, c)) |
||||||
y = self.fc(y).reshape((b, c, 1, 1)) |
y = self.fc(y).reshape((b, c, 1, 1)) |
||||||
return x * paddle.expand(y, shape=x.shape) |
return x * paddle.expand(y, shape=x.shape) |
||||||
|
|
||||||
|
|
||||||
class HS(nn.Layer): |
class HS(nn.Layer): |
||||||
def __init__(self): |
def __init__(self): |
||||||
super(HS, self).__init__() |
super(HS, self).__init__() |
||||||
self.relu6 = nn.ReLU6() |
self.relu6 = nn.ReLU6() |
||||||
|
|
||||||
def forward(self, inputs): |
def forward(self, inputs): |
||||||
return inputs * self.relu6(inputs + 3) / 6 |
return inputs * self.relu6(inputs + 3) / 6 |
||||||
|
|
||||||
|
|
||||||
class Conv(nn.Sequential): |
class Conv(nn.Sequential): |
||||||
def __init__( |
def __init__( |
||||||
self, |
self, |
||||||
in_channels, |
in_channels, |
||||||
out_channels, |
out_channels, |
||||||
kernel_size, |
kernel_size, |
||||||
stride=1, |
stride=1, |
||||||
padding=0, |
padding=0, |
||||||
groups=1, |
groups=1, |
||||||
activation="ReLU", |
activation="ReLU", |
||||||
bn_momentum=0.9, ): |
bn_momentum=0.9, ): |
||||||
super(Conv, self).__init__() |
super(Conv, self).__init__() |
||||||
self.add_sublayer( |
self.add_sublayer( |
||||||
"norm", nn.BatchNorm2D( |
"norm", nn.BatchNorm2D( |
||||||
in_channels, momentum=bn_momentum)) |
in_channels, momentum=bn_momentum)) |
||||||
if activation == "ReLU": |
if activation == "ReLU": |
||||||
self.add_sublayer("activation", nn.ReLU()) |
self.add_sublayer("activation", nn.ReLU()) |
||||||
elif activation == "HS": |
elif activation == "HS": |
||||||
self.add_sublayer("activation", HS()) |
self.add_sublayer("activation", HS()) |
||||||
else: |
else: |
||||||
raise NotImplementedError |
raise NotImplementedError |
||||||
self.add_sublayer( |
self.add_sublayer( |
||||||
"conv", |
"conv", |
||||||
nn.Conv2D( |
nn.Conv2D( |
||||||
in_channels, |
in_channels, |
||||||
out_channels, |
out_channels, |
||||||
kernel_size=kernel_size, |
kernel_size=kernel_size, |
||||||
stride=stride, |
stride=stride, |
||||||
padding=padding, |
padding=padding, |
||||||
bias_attr=False, |
bias_attr=False, |
||||||
groups=groups, ), ) |
groups=groups, ), ) |
||||||
|
|
||||||
|
|
||||||
def ShuffleLayer(x, groups): |
def ShuffleLayer(x, groups): |
||||||
batchsize, num_channels, height, width = x.shape |
batchsize, num_channels, height, width = x.shape |
||||||
channels_per_group = num_channels // groups |
channels_per_group = num_channels // groups |
||||||
# Reshape |
# Reshape |
||||||
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
||||||
# Transpose |
# Transpose |
||||||
x = x.transpose((0, 2, 1, 3, 4)) |
x = x.transpose((0, 2, 1, 3, 4)) |
||||||
# Reshape |
# Reshape |
||||||
x = x.reshape((batchsize, groups * channels_per_group, height, width)) |
x = x.reshape((batchsize, groups * channels_per_group, height, width)) |
||||||
return x |
return x |
||||||
|
|
||||||
|
|
||||||
def ShuffleLayerTrans(x, groups): |
def ShuffleLayerTrans(x, groups): |
||||||
batchsize, num_channels, height, width = x.shape |
batchsize, num_channels, height, width = x.shape |
||||||
channels_per_group = num_channels // groups |
channels_per_group = num_channels // groups |
||||||
# Reshape |
# Reshape |
||||||
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
||||||
# Transpose |
# Transpose |
||||||
x = x.transpose((0, 2, 1, 3, 4)) |
x = x.transpose((0, 2, 1, 3, 4)) |
||||||
# Reshape |
# Reshape |
||||||
x = x.reshape((batchsize, channels_per_group * groups, height, width)) |
x = x.reshape((batchsize, channels_per_group * groups, height, width)) |
||||||
return x |
return x |
||||||
|
|
||||||
|
|
||||||
class CondenseLGC(nn.Layer): |
class CondenseLGC(nn.Layer): |
||||||
def __init__( |
def __init__( |
||||||
self, |
self, |
||||||
in_channels, |
in_channels, |
||||||
out_channels, |
out_channels, |
||||||
kernel_size, |
kernel_size, |
||||||
stride=1, |
stride=1, |
||||||
padding=0, |
padding=0, |
||||||
groups=1, |
groups=1, |
||||||
activation="ReLU", ): |
activation="ReLU", ): |
||||||
super(CondenseLGC, self).__init__() |
super(CondenseLGC, self).__init__() |
||||||
self.in_channels = in_channels |
self.in_channels = in_channels |
||||||
self.out_channels = out_channels |
self.out_channels = out_channels |
||||||
self.groups = groups |
self.groups = groups |
||||||
self.norm = nn.BatchNorm2D(self.in_channels) |
self.norm = nn.BatchNorm2D(self.in_channels) |
||||||
if activation == "ReLU": |
if activation == "ReLU": |
||||||
self.activation = nn.ReLU() |
self.activation = nn.ReLU() |
||||||
elif activation == "HS": |
elif activation == "HS": |
||||||
self.activation = HS() |
self.activation = HS() |
||||||
else: |
else: |
||||||
raise NotImplementedError |
raise NotImplementedError |
||||||
self.conv = nn.Conv2D( |
self.conv = nn.Conv2D( |
||||||
self.in_channels, |
self.in_channels, |
||||||
self.out_channels, |
self.out_channels, |
||||||
kernel_size=kernel_size, |
kernel_size=kernel_size, |
||||||
stride=stride, |
stride=stride, |
||||||
padding=padding, |
padding=padding, |
||||||
groups=self.groups, |
groups=self.groups, |
||||||
bias_attr=False, ) |
bias_attr=False, ) |
||||||
self.register_buffer( |
self.register_buffer( |
||||||
"index", paddle.zeros( |
"index", paddle.zeros( |
||||||
(self.in_channels, ), dtype="int64")) |
(self.in_channels, ), dtype="int64")) |
||||||
|
|
||||||
def forward(self, x): |
def forward(self, x): |
||||||
x = paddle.index_select(x, self.index, axis=1) |
x = paddle.index_select(x, self.index, axis=1) |
||||||
x = self.norm(x) |
x = self.norm(x) |
||||||
x = self.activation(x) |
x = self.activation(x) |
||||||
x = self.conv(x) |
x = self.conv(x) |
||||||
x = ShuffleLayer(x, self.groups) |
x = ShuffleLayer(x, self.groups) |
||||||
return x |
return x |
||||||
|
|
||||||
|
|
||||||
class CondenseSFR(nn.Layer): |
class CondenseSFR(nn.Layer): |
||||||
def __init__( |
def __init__( |
||||||
self, |
self, |
||||||
in_channels, |
in_channels, |
||||||
out_channels, |
out_channels, |
||||||
kernel_size, |
kernel_size, |
||||||
stride=1, |
stride=1, |
||||||
padding=0, |
padding=0, |
||||||
groups=1, |
groups=1, |
||||||
activation="ReLU", ): |
activation="ReLU", ): |
||||||
super(CondenseSFR, self).__init__() |
super(CondenseSFR, self).__init__() |
||||||
self.in_channels = in_channels |
self.in_channels = in_channels |
||||||
self.out_channels = out_channels |
self.out_channels = out_channels |
||||||
self.groups = groups |
self.groups = groups |
||||||
self.norm = nn.BatchNorm2D(self.in_channels) |
self.norm = nn.BatchNorm2D(self.in_channels) |
||||||
if activation == "ReLU": |
if activation == "ReLU": |
||||||
self.activation = nn.ReLU() |
self.activation = nn.ReLU() |
||||||
elif activation == "HS": |
elif activation == "HS": |
||||||
self.activation = HS() |
self.activation = HS() |
||||||
else: |
else: |
||||||
raise NotImplementedError |
raise NotImplementedError |
||||||
self.conv = nn.Conv2D( |
self.conv = nn.Conv2D( |
||||||
self.in_channels, |
self.in_channels, |
||||||
self.out_channels, |
self.out_channels, |
||||||
kernel_size=kernel_size, |
kernel_size=kernel_size, |
||||||
padding=padding, |
padding=padding, |
||||||
groups=self.groups, |
groups=self.groups, |
||||||
bias_attr=False, |
bias_attr=False, |
||||||
stride=stride, ) |
stride=stride, ) |
||||||
self.register_buffer("index", |
self.register_buffer("index", |
||||||
paddle.zeros( |
paddle.zeros( |
||||||
(self.out_channels, self.out_channels))) |
(self.out_channels, self.out_channels))) |
||||||
|
|
||||||
def forward(self, x): |
def forward(self, x): |
||||||
x = self.norm(x) |
x = self.norm(x) |
||||||
x = self.activation(x) |
x = self.activation(x) |
||||||
x = ShuffleLayerTrans(x, self.groups) |
x = ShuffleLayerTrans(x, self.groups) |
||||||
x = self.conv(x) # SIZE: N, C, H, W |
x = self.conv(x) # SIZE: N, C, H, W |
||||||
N, C, H, W = x.shape |
N, C, H, W = x.shape |
||||||
x = x.reshape((N, C, H * W)) |
x = x.reshape((N, C, H * W)) |
||||||
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
||||||
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
||||||
x = paddle.matmul(x, self.index) |
x = paddle.matmul(x, self.index) |
||||||
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW |
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW |
||||||
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW |
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW |
||||||
return x |
return x |
||||||
|
|
||||||
|
|
||||||
class _SFR_DenseLayer(nn.Layer): |
class _SFR_DenseLayer(nn.Layer): |
||||||
def __init__( |
def __init__( |
||||||
self, |
self, |
||||||
in_channels, |
in_channels, |
||||||
growth_rate, |
growth_rate, |
||||||
group_1x1, |
group_1x1, |
||||||
group_3x3, |
group_3x3, |
||||||
group_trans, |
group_trans, |
||||||
bottleneck, |
bottleneck, |
||||||
activation, |
activation, |
||||||
use_se=False, ): |
use_se=False, ): |
||||||
super(_SFR_DenseLayer, self).__init__() |
super(_SFR_DenseLayer, self).__init__() |
||||||
self.group_1x1 = group_1x1 |
self.group_1x1 = group_1x1 |
||||||
self.group_3x3 = group_3x3 |
self.group_3x3 = group_3x3 |
||||||
self.group_trans = group_trans |
self.group_trans = group_trans |
||||||
self.use_se = use_se |
self.use_se = use_se |
||||||
# 1x1 conv i --> b*k |
# 1x1 conv i --> b*k |
||||||
self.conv_1 = CondenseLGC( |
self.conv_1 = CondenseLGC( |
||||||
in_channels, |
in_channels, |
||||||
bottleneck * growth_rate, |
bottleneck * growth_rate, |
||||||
kernel_size=1, |
kernel_size=1, |
||||||
groups=self.group_1x1, |
groups=self.group_1x1, |
||||||
activation=activation, ) |
activation=activation, ) |
||||||
# 3x3 conv b*k --> k |
# 3x3 conv b*k --> k |
||||||
self.conv_2 = Conv( |
self.conv_2 = Conv( |
||||||
bottleneck * growth_rate, |
bottleneck * growth_rate, |
||||||
growth_rate, |
growth_rate, |
||||||
kernel_size=3, |
kernel_size=3, |
||||||
padding=1, |
padding=1, |
||||||
groups=self.group_3x3, |
groups=self.group_3x3, |
||||||
activation=activation, ) |
activation=activation, ) |
||||||
# 1x1 res conv k(8-16-32)--> i (k*l) |
# 1x1 res conv k(8-16-32)--> i (k*l) |
||||||
self.sfr = CondenseSFR( |
self.sfr = CondenseSFR( |
||||||
growth_rate, |
growth_rate, |
||||||
in_channels, |
in_channels, |
||||||
kernel_size=1, |
kernel_size=1, |
||||||
groups=self.group_trans, |
groups=self.group_trans, |
||||||
activation=activation, ) |
activation=activation, ) |
||||||
if self.use_se: |
if self.use_se: |
||||||
self.se = SELayer(inplanes=growth_rate, reduction=1) |
self.se = SELayer(inplanes=growth_rate, reduction=1) |
||||||
|
|
||||||
def forward(self, x): |
def forward(self, x): |
||||||
x_ = x |
x_ = x |
||||||
x = self.conv_1(x) |
x = self.conv_1(x) |
||||||
x = self.conv_2(x) |
x = self.conv_2(x) |
||||||
if self.use_se: |
if self.use_se: |
||||||
x = self.se(x) |
x = self.se(x) |
||||||
sfr_feature = self.sfr(x) |
sfr_feature = self.sfr(x) |
||||||
y = x_ + sfr_feature |
y = x_ + sfr_feature |
||||||
return paddle.concat([y, x], 1) |
return paddle.concat([y, x], 1) |
||||||
|
|
||||||
|
|
||||||
class _SFR_DenseBlock(nn.Sequential): |
class _SFR_DenseBlock(nn.Sequential): |
||||||
def __init__( |
def __init__( |
||||||
self, |
self, |
||||||
num_layers, |
num_layers, |
||||||
in_channels, |
in_channels, |
||||||
growth_rate, |
growth_rate, |
||||||
group_1x1, |
group_1x1, |
||||||
group_3x3, |
group_3x3, |
||||||
group_trans, |
group_trans, |
||||||
bottleneck, |
bottleneck, |
||||||
activation, |
activation, |
||||||
use_se, ): |
use_se, ): |
||||||
super(_SFR_DenseBlock, self).__init__() |
super(_SFR_DenseBlock, self).__init__() |
||||||
for i in range(num_layers): |
for i in range(num_layers): |
||||||
layer = _SFR_DenseLayer( |
layer = _SFR_DenseLayer( |
||||||
in_channels + i * growth_rate, |
in_channels + i * growth_rate, |
||||||
growth_rate, |
growth_rate, |
||||||
group_1x1, |
group_1x1, |
||||||
group_3x3, |
group_3x3, |
||||||
group_trans, |
group_trans, |
||||||
bottleneck, |
bottleneck, |
||||||
activation, |
activation, |
||||||
use_se, ) |
use_se, ) |
||||||
self.add_sublayer("denselayer_%d" % (i + 1), layer) |
self.add_sublayer("denselayer_%d" % (i + 1), layer) |
||||||
|
|
||||||
|
|
||||||
class _Transition(nn.Layer): |
class _Transition(nn.Layer): |
||||||
def __init__(self): |
def __init__(self): |
||||||
super(_Transition, self).__init__() |
super(_Transition, self).__init__() |
||||||
self.pool = nn.AvgPool2D(kernel_size=2, stride=2) |
self.pool = nn.AvgPool2D(kernel_size=2, stride=2) |
||||||
|
|
||||||
def forward(self, x): |
def forward(self, x): |
||||||
x = self.pool(x) |
x = self.pool(x) |
||||||
return x |
return x |
||||||
|
|
||||||
|
|
||||||
class CondenseNetV2(nn.Layer): |
class CondenseNetV2(nn.Layer): |
||||||
def __init__( |
def __init__( |
||||||
self, |
self, |
||||||
stages, |
stages, |
||||||
growth, |
growth, |
||||||
HS_start_block, |
HS_start_block, |
||||||
SE_start_block, |
SE_start_block, |
||||||
fc_channel, |
fc_channel, |
||||||
group_1x1, |
group_1x1, |
||||||
group_3x3, |
group_3x3, |
||||||
group_trans, |
group_trans, |
||||||
bottleneck, |
bottleneck, |
||||||
last_se_reduction, |
last_se_reduction, |
||||||
in_channels=3, |
in_channels=3, |
||||||
class_num=1000, ): |
class_num=1000, ): |
||||||
super(CondenseNetV2, self).__init__() |
super(CondenseNetV2, self).__init__() |
||||||
self.stages = stages |
self.stages = stages |
||||||
self.growth = growth |
self.growth = growth |
||||||
self.in_channels = in_channels |
self.in_channels = in_channels |
||||||
self.class_num = class_num |
self.class_num = class_num |
||||||
self.last_se_reduction = last_se_reduction |
self.last_se_reduction = last_se_reduction |
||||||
assert len(self.stages) == len(self.growth) |
assert len(self.stages) == len(self.growth) |
||||||
self.progress = 0.0 |
self.progress = 0.0 |
||||||
|
|
||||||
self.init_stride = 2 |
self.init_stride = 2 |
||||||
self.pool_size = 7 |
self.pool_size = 7 |
||||||
|
|
||||||
self.features = nn.Sequential() |
self.features = nn.Sequential() |
||||||
# Initial nChannels should be 3 |
# Initial nChannels should be 3 |
||||||
self.num_features = 2 * self.growth[0] |
self.num_features = 2 * self.growth[0] |
||||||
# Dense-block 1 (224x224) |
# Dense-block 1 (224x224) |
||||||
self.features.add_sublayer( |
self.features.add_sublayer( |
||||||
"init_conv", |
"init_conv", |
||||||
nn.Conv2D( |
nn.Conv2D( |
||||||
in_channels, |
in_channels, |
||||||
self.num_features, |
self.num_features, |
||||||
kernel_size=3, |
kernel_size=3, |
||||||
stride=self.init_stride, |
stride=self.init_stride, |
||||||
padding=1, |
padding=1, |
||||||
bias_attr=False, ), ) |
bias_attr=False, ), ) |
||||||
for i in range(len(self.stages)): |
for i in range(len(self.stages)): |
||||||
activation = "HS" if i >= HS_start_block else "ReLU" |
activation = "HS" if i >= HS_start_block else "ReLU" |
||||||
use_se = True if i >= SE_start_block else False |
use_se = True if i >= SE_start_block else False |
||||||
# Dense-block i |
# Dense-block i |
||||||
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck, |
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck, |
||||||
activation, use_se) |
activation, use_se) |
||||||
|
|
||||||
self.fc = nn.Linear(self.num_features, fc_channel) |
self.fc = nn.Linear(self.num_features, fc_channel) |
||||||
self.fc_act = HS() |
self.fc_act = HS() |
||||||
|
|
||||||
# Classifier layer |
# Classifier layer |
||||||
if class_num > 0: |
if class_num > 0: |
||||||
self.classifier = nn.Linear(fc_channel, class_num) |
self.classifier = nn.Linear(fc_channel, class_num) |
||||||
self._initialize() |
self._initialize() |
||||||
|
|
||||||
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck, |
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck, |
||||||
activation, use_se): |
activation, use_se): |
||||||
# Check if ith is the last one |
# Check if ith is the last one |
||||||
last = i == len(self.stages) - 1 |
last = i == len(self.stages) - 1 |
||||||
block = _SFR_DenseBlock( |
block = _SFR_DenseBlock( |
||||||
num_layers=self.stages[i], |
num_layers=self.stages[i], |
||||||
in_channels=self.num_features, |
in_channels=self.num_features, |
||||||
growth_rate=self.growth[i], |
growth_rate=self.growth[i], |
||||||
group_1x1=group_1x1, |
group_1x1=group_1x1, |
||||||
group_3x3=group_3x3, |
group_3x3=group_3x3, |
||||||
group_trans=group_trans, |
group_trans=group_trans, |
||||||
bottleneck=bottleneck, |
bottleneck=bottleneck, |
||||||
activation=activation, |
activation=activation, |
||||||
use_se=use_se, ) |
use_se=use_se, ) |
||||||
self.features.add_sublayer("denseblock_%d" % (i + 1), block) |
self.features.add_sublayer("denseblock_%d" % (i + 1), block) |
||||||
self.num_features += self.stages[i] * self.growth[i] |
self.num_features += self.stages[i] * self.growth[i] |
||||||
if not last: |
if not last: |
||||||
trans = _Transition() |
trans = _Transition() |
||||||
self.features.add_sublayer("transition_%d" % (i + 1), trans) |
self.features.add_sublayer("transition_%d" % (i + 1), trans) |
||||||
else: |
else: |
||||||
self.features.add_sublayer("norm_last", |
self.features.add_sublayer("norm_last", |
||||||
nn.BatchNorm2D(self.num_features)) |
nn.BatchNorm2D(self.num_features)) |
||||||
self.features.add_sublayer("relu_last", nn.ReLU()) |
self.features.add_sublayer("relu_last", nn.ReLU()) |
||||||
self.features.add_sublayer("pool_last", |
self.features.add_sublayer("pool_last", |
||||||
nn.AvgPool2D(self.pool_size)) |
nn.AvgPool2D(self.pool_size)) |
||||||
# if useSE: |
# if useSE: |
||||||
self.features.add_sublayer( |
self.features.add_sublayer( |
||||||
"se_last", |
"se_last", |
||||||
SELayer( |
SELayer( |
||||||
self.num_features, reduction=self.last_se_reduction)) |
self.num_features, reduction=self.last_se_reduction)) |
||||||
|
|
||||||
def forward(self, x): |
def forward(self, x): |
||||||
features = self.features(x) |
features = self.features(x) |
||||||
out = features.reshape((features.shape[0], features.shape[1] * |
out = features.reshape((features.shape[0], features.shape[1] * |
||||||
features.shape[2] * features.shape[3])) |
features.shape[2] * features.shape[3])) |
||||||
out = self.fc(out) |
out = self.fc(out) |
||||||
out = self.fc_act(out) |
out = self.fc_act(out) |
||||||
|
|
||||||
if self.class_num > 0: |
if self.class_num > 0: |
||||||
out = self.classifier(out) |
out = self.classifier(out) |
||||||
|
|
||||||
return out |
return out |
||||||
|
|
||||||
def _initialize(self): |
def _initialize(self): |
||||||
# Initialize |
# Initialize |
||||||
for m in self.sublayers(): |
for m in self.sublayers(): |
||||||
if isinstance(m, nn.Conv2D): |
if isinstance(m, nn.Conv2D): |
||||||
nn.initializer.KaimingNormal()(m.weight) |
nn.initializer.KaimingNormal()(m.weight) |
||||||
elif isinstance(m, nn.BatchNorm2D): |
elif isinstance(m, nn.BatchNorm2D): |
||||||
nn.initializer.Constant(value=1.0)(m.weight) |
nn.initializer.Constant(value=1.0)(m.weight) |
||||||
nn.initializer.Constant(value=0.0)(m.bias) |
nn.initializer.Constant(value=0.0)(m.bias) |
||||||
|
|
||||||
|
|
||||||
def CondenseNetV2_a(**kwargs): |
def CondenseNetV2_A(**kwargs): |
||||||
model = CondenseNetV2( |
model = CondenseNetV2( |
||||||
stages=[1, 1, 4, 6, 8], |
stages=[1, 1, 4, 6, 8], |
||||||
growth=[8, 8, 16, 32, 64], |
growth=[8, 8, 16, 32, 64], |
||||||
HS_start_block=2, |
HS_start_block=2, |
||||||
SE_start_block=3, |
SE_start_block=3, |
||||||
fc_channel=828, |
fc_channel=828, |
||||||
group_1x1=8, |
group_1x1=8, |
||||||
group_3x3=8, |
group_3x3=8, |
||||||
group_trans=8, |
group_trans=8, |
||||||
bottleneck=4, |
bottleneck=4, |
||||||
last_se_reduction=16, |
last_se_reduction=16, |
||||||
**kwargs) |
**kwargs) |
||||||
return model |
return model |
||||||
|
|
||||||
|
|
||||||
def CondenseNetV2_b(**kwargs): |
def CondenseNetV2_B(**kwargs): |
||||||
model = CondenseNetV2( |
model = CondenseNetV2( |
||||||
stages=[2, 4, 6, 8, 6], |
stages=[2, 4, 6, 8, 6], |
||||||
growth=[6, 12, 24, 48, 96], |
growth=[6, 12, 24, 48, 96], |
||||||
HS_start_block=2, |
HS_start_block=2, |
||||||
SE_start_block=3, |
SE_start_block=3, |
||||||
fc_channel=1024, |
fc_channel=1024, |
||||||
group_1x1=6, |
group_1x1=6, |
||||||
group_3x3=6, |
group_3x3=6, |
||||||
group_trans=6, |
group_trans=6, |
||||||
bottleneck=4, |
bottleneck=4, |
||||||
last_se_reduction=16, |
last_se_reduction=16, |
||||||
**kwargs) |
**kwargs) |
||||||
return model |
return model |
||||||
|
|
||||||
|
|
||||||
def CondenseNetV2_c(**kwargs): |
def CondenseNetV2_C(**kwargs): |
||||||
model = CondenseNetV2( |
model = CondenseNetV2( |
||||||
stages=[4, 6, 8, 10, 8], |
stages=[4, 6, 8, 10, 8], |
||||||
growth=[8, 16, 32, 64, 128], |
growth=[8, 16, 32, 64, 128], |
||||||
HS_start_block=2, |
HS_start_block=2, |
||||||
SE_start_block=3, |
SE_start_block=3, |
||||||
fc_channel=1024, |
fc_channel=1024, |
||||||
group_1x1=8, |
group_1x1=8, |
||||||
group_3x3=8, |
group_3x3=8, |
||||||
group_trans=8, |
group_trans=8, |
||||||
bottleneck=4, |
bottleneck=4, |
||||||
last_se_reduction=16, |
last_se_reduction=16, |
||||||
**kwargs) |
**kwargs) |
||||||
return model |
return model |
@ -0,0 +1,10 @@ |
|||||||
|
# Configurations of CondenseNet V2 with UCMerced dataset |
||||||
|
|
||||||
|
_base_: ../_base_/ucmerced.yaml |
||||||
|
|
||||||
|
save_dir: ./test_tipc/output/clas/condensenetv2/ |
||||||
|
|
||||||
|
model: !Node |
||||||
|
type: CondenseNetV2 |
||||||
|
args: |
||||||
|
num_classes: 21 |
@ -0,0 +1,53 @@ |
|||||||
|
===========================train_params=========================== |
||||||
|
model_name:clas:condensenetv2 |
||||||
|
python:python |
||||||
|
gpu_list:0|0,1 |
||||||
|
use_gpu:null|null |
||||||
|
--precision:null |
||||||
|
--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=10 |
||||||
|
--save_dir:adaptive |
||||||
|
--train_batch_size:lite_train_lite_infer=16|lite_train_whole_infer=16|whole_train_whole_infer=16 |
||||||
|
--model_path:null |
||||||
|
--config:lite_train_lite_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml|lite_train_whole_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml|whole_train_whole_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml |
||||||
|
train_model_name:best_model |
||||||
|
null:null |
||||||
|
## |
||||||
|
trainer:norm |
||||||
|
norm_train:test_tipc/run_task.py train clas |
||||||
|
pact_train:null |
||||||
|
fpgm_train:null |
||||||
|
distill_train:null |
||||||
|
null:null |
||||||
|
null:null |
||||||
|
## |
||||||
|
===========================eval_params=========================== |
||||||
|
eval:null |
||||||
|
null:null |
||||||
|
## |
||||||
|
===========================export_params=========================== |
||||||
|
--save_dir:adaptive |
||||||
|
--model_dir:adaptive |
||||||
|
--fixed_input_shape:[-1,3,256,256] |
||||||
|
norm_export:deploy/export/export_model.py |
||||||
|
quant_export:null |
||||||
|
fpgm_export:null |
||||||
|
distill_export:null |
||||||
|
export1:null |
||||||
|
export2:null |
||||||
|
===========================infer_params=========================== |
||||||
|
infer_model:null |
||||||
|
infer_export:null |
||||||
|
infer_quant:False |
||||||
|
inference:test_tipc/infer.py |
||||||
|
--device:cpu|gpu |
||||||
|
--enable_mkldnn:True |
||||||
|
--cpu_threads:6 |
||||||
|
--batch_size:1 |
||||||
|
--use_trt:False |
||||||
|
--precision:fp32 |
||||||
|
--model_dir:null |
||||||
|
--config:null |
||||||
|
--save_log_path:null |
||||||
|
--benchmark:True |
||||||
|
--model_name:condensenetv2 |
||||||
|
null:null |
@ -1,10 +0,0 @@ |
|||||||
# Basic configurations of HRNet |
|
||||||
|
|
||||||
_base_: ../_base_/ucmerced.yaml |
|
||||||
|
|
||||||
save_dir: ./test_tipc/output/clas/hrnet/ |
|
||||||
|
|
||||||
model: !Node |
|
||||||
type: HRNet_W18_C |
|
||||||
args: |
|
||||||
num_classes: 21 |
|
@ -0,0 +1,90 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
|
||||||
|
# 场景分类模型CondenseNet V2训练示例脚本 |
||||||
|
# 执行此脚本前,请确认已正确安装PaddleRS库 |
||||||
|
|
||||||
|
import paddlers as pdrs |
||||||
|
from paddlers import transforms as T |
||||||
|
|
||||||
|
# 数据集存放目录 |
||||||
|
DATA_DIR = './data/ucmerced/' |
||||||
|
# 训练集`file_list`文件路径 |
||||||
|
TRAIN_FILE_LIST_PATH = './data/ucmerced/train.txt' |
||||||
|
# 验证集`file_list`文件路径 |
||||||
|
EVAL_FILE_LIST_PATH = './data/ucmerced/val.txt' |
||||||
|
# 数据集类别信息文件路径 |
||||||
|
LABEL_LIST_PATH = './data/ucmerced/labels.txt' |
||||||
|
# 实验目录,保存输出的模型权重和结果 |
||||||
|
EXP_DIR = './output/hrnet/' |
||||||
|
|
||||||
|
# 下载和解压UC Merced数据集 |
||||||
|
pdrs.utils.download_and_decompress( |
||||||
|
'https://paddlers.bj.bcebos.com/datasets/ucmerced.zip', path='./data/') |
||||||
|
|
||||||
|
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
||||||
|
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
||||||
|
# API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md |
||||||
|
train_transforms = T.Compose([ |
||||||
|
# 读取影像 |
||||||
|
T.DecodeImg(), |
||||||
|
# 将影像缩放到256x256大小 |
||||||
|
T.Resize(target_size=256), |
||||||
|
# 以50%的概率实施随机水平翻转 |
||||||
|
T.RandomHorizontalFlip(prob=0.5), |
||||||
|
# 以50%的概率实施随机垂直翻转 |
||||||
|
T.RandomVerticalFlip(prob=0.5), |
||||||
|
# 将数据归一化到[-1,1] |
||||||
|
T.Normalize( |
||||||
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||||
|
T.ArrangeClassifier('train') |
||||||
|
]) |
||||||
|
|
||||||
|
eval_transforms = T.Compose([ |
||||||
|
T.DecodeImg(), |
||||||
|
T.Resize(target_size=256), |
||||||
|
# 验证阶段与训练阶段的数据归一化方式必须相同 |
||||||
|
T.Normalize( |
||||||
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||||
|
T.ArrangeClassifier('eval') |
||||||
|
]) |
||||||
|
|
||||||
|
# 分别构建训练和验证所用的数据集 |
||||||
|
train_dataset = pdrs.datasets.ClasDataset( |
||||||
|
data_dir=DATA_DIR, |
||||||
|
file_list=TRAIN_FILE_LIST_PATH, |
||||||
|
label_list=LABEL_LIST_PATH, |
||||||
|
transforms=train_transforms, |
||||||
|
num_workers=0, |
||||||
|
shuffle=True) |
||||||
|
|
||||||
|
eval_dataset = pdrs.datasets.ClasDataset( |
||||||
|
data_dir=DATA_DIR, |
||||||
|
file_list=EVAL_FILE_LIST_PATH, |
||||||
|
label_list=LABEL_LIST_PATH, |
||||||
|
transforms=eval_transforms, |
||||||
|
num_workers=0, |
||||||
|
shuffle=False) |
||||||
|
|
||||||
|
# 构建CondenseNet V2模型 |
||||||
|
# 目前已支持的模型请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/intro/model_zoo.md |
||||||
|
# 模型输入参数请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/classifier.py |
||||||
|
model = pdrs.tasks.clas.CondenseNetV2(num_classes=len(train_dataset.labels)) |
||||||
|
|
||||||
|
# 执行模型训练 |
||||||
|
model.train( |
||||||
|
num_epochs=2, |
||||||
|
train_dataset=train_dataset, |
||||||
|
train_batch_size=16, |
||||||
|
eval_dataset=eval_dataset, |
||||||
|
save_interval_epochs=1, |
||||||
|
# 每多少次迭代记录一次日志 |
||||||
|
log_interval_steps=50, |
||||||
|
save_dir=EXP_DIR, |
||||||
|
# 初始学习率大小 |
||||||
|
learning_rate=0.01, |
||||||
|
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
||||||
|
early_stop=False, |
||||||
|
# 是否启用VisualDL日志功能 |
||||||
|
use_vdl=True, |
||||||
|
# 指定从某个检查点继续训练 |
||||||
|
resume_checkpoint=None) |
Loading…
Reference in new issue