parent
d51b683942
commit
a895234700
8 changed files with 644 additions and 464 deletions
@ -1,442 +1,442 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
""" |
||||
This code is based on https://github.com/AgentMaker/Paddle-Image-Models |
||||
Ths copyright of AgentMaker/Paddle-Image-Models is as follows: |
||||
Apache License [see LICENSE for details] |
||||
""" |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
|
||||
__all__ = ["CondenseNetV2_a", "CondenseNetV2_b", "CondenseNetV2_c"] |
||||
|
||||
|
||||
class SELayer(nn.Layer): |
||||
def __init__(self, inplanes, reduction=16): |
||||
super(SELayer, self).__init__() |
||||
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
||||
self.fc = nn.Sequential( |
||||
nn.Linear( |
||||
inplanes, inplanes // reduction, bias_attr=False), |
||||
nn.ReLU(), |
||||
nn.Linear( |
||||
inplanes // reduction, inplanes, bias_attr=False), |
||||
nn.Sigmoid(), ) |
||||
|
||||
def forward(self, x): |
||||
b, c, _, _ = x.shape |
||||
y = self.avg_pool(x).reshape((b, c)) |
||||
y = self.fc(y).reshape((b, c, 1, 1)) |
||||
return x * paddle.expand(y, shape=x.shape) |
||||
|
||||
|
||||
class HS(nn.Layer): |
||||
def __init__(self): |
||||
super(HS, self).__init__() |
||||
self.relu6 = nn.ReLU6() |
||||
|
||||
def forward(self, inputs): |
||||
return inputs * self.relu6(inputs + 3) / 6 |
||||
|
||||
|
||||
class Conv(nn.Sequential): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", |
||||
bn_momentum=0.9, ): |
||||
super(Conv, self).__init__() |
||||
self.add_sublayer( |
||||
"norm", nn.BatchNorm2D( |
||||
in_channels, momentum=bn_momentum)) |
||||
if activation == "ReLU": |
||||
self.add_sublayer("activation", nn.ReLU()) |
||||
elif activation == "HS": |
||||
self.add_sublayer("activation", HS()) |
||||
else: |
||||
raise NotImplementedError |
||||
self.add_sublayer( |
||||
"conv", |
||||
nn.Conv2D( |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size=kernel_size, |
||||
stride=stride, |
||||
padding=padding, |
||||
bias_attr=False, |
||||
groups=groups, ), ) |
||||
|
||||
|
||||
def ShuffleLayer(x, groups): |
||||
batchsize, num_channels, height, width = x.shape |
||||
channels_per_group = num_channels // groups |
||||
# Reshape |
||||
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
||||
# Transpose |
||||
x = x.transpose((0, 2, 1, 3, 4)) |
||||
# Reshape |
||||
x = x.reshape((batchsize, groups * channels_per_group, height, width)) |
||||
return x |
||||
|
||||
|
||||
def ShuffleLayerTrans(x, groups): |
||||
batchsize, num_channels, height, width = x.shape |
||||
channels_per_group = num_channels // groups |
||||
# Reshape |
||||
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
||||
# Transpose |
||||
x = x.transpose((0, 2, 1, 3, 4)) |
||||
# Reshape |
||||
x = x.reshape((batchsize, channels_per_group * groups, height, width)) |
||||
return x |
||||
|
||||
|
||||
class CondenseLGC(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", ): |
||||
super(CondenseLGC, self).__init__() |
||||
self.in_channels = in_channels |
||||
self.out_channels = out_channels |
||||
self.groups = groups |
||||
self.norm = nn.BatchNorm2D(self.in_channels) |
||||
if activation == "ReLU": |
||||
self.activation = nn.ReLU() |
||||
elif activation == "HS": |
||||
self.activation = HS() |
||||
else: |
||||
raise NotImplementedError |
||||
self.conv = nn.Conv2D( |
||||
self.in_channels, |
||||
self.out_channels, |
||||
kernel_size=kernel_size, |
||||
stride=stride, |
||||
padding=padding, |
||||
groups=self.groups, |
||||
bias_attr=False, ) |
||||
self.register_buffer( |
||||
"index", paddle.zeros( |
||||
(self.in_channels, ), dtype="int64")) |
||||
|
||||
def forward(self, x): |
||||
x = paddle.index_select(x, self.index, axis=1) |
||||
x = self.norm(x) |
||||
x = self.activation(x) |
||||
x = self.conv(x) |
||||
x = ShuffleLayer(x, self.groups) |
||||
return x |
||||
|
||||
|
||||
class CondenseSFR(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", ): |
||||
super(CondenseSFR, self).__init__() |
||||
self.in_channels = in_channels |
||||
self.out_channels = out_channels |
||||
self.groups = groups |
||||
self.norm = nn.BatchNorm2D(self.in_channels) |
||||
if activation == "ReLU": |
||||
self.activation = nn.ReLU() |
||||
elif activation == "HS": |
||||
self.activation = HS() |
||||
else: |
||||
raise NotImplementedError |
||||
self.conv = nn.Conv2D( |
||||
self.in_channels, |
||||
self.out_channels, |
||||
kernel_size=kernel_size, |
||||
padding=padding, |
||||
groups=self.groups, |
||||
bias_attr=False, |
||||
stride=stride, ) |
||||
self.register_buffer("index", |
||||
paddle.zeros( |
||||
(self.out_channels, self.out_channels))) |
||||
|
||||
def forward(self, x): |
||||
x = self.norm(x) |
||||
x = self.activation(x) |
||||
x = ShuffleLayerTrans(x, self.groups) |
||||
x = self.conv(x) # SIZE: N, C, H, W |
||||
N, C, H, W = x.shape |
||||
x = x.reshape((N, C, H * W)) |
||||
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
||||
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
||||
x = paddle.matmul(x, self.index) |
||||
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW |
||||
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW |
||||
return x |
||||
|
||||
|
||||
class _SFR_DenseLayer(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se=False, ): |
||||
super(_SFR_DenseLayer, self).__init__() |
||||
self.group_1x1 = group_1x1 |
||||
self.group_3x3 = group_3x3 |
||||
self.group_trans = group_trans |
||||
self.use_se = use_se |
||||
# 1x1 conv i --> b*k |
||||
self.conv_1 = CondenseLGC( |
||||
in_channels, |
||||
bottleneck * growth_rate, |
||||
kernel_size=1, |
||||
groups=self.group_1x1, |
||||
activation=activation, ) |
||||
# 3x3 conv b*k --> k |
||||
self.conv_2 = Conv( |
||||
bottleneck * growth_rate, |
||||
growth_rate, |
||||
kernel_size=3, |
||||
padding=1, |
||||
groups=self.group_3x3, |
||||
activation=activation, ) |
||||
# 1x1 res conv k(8-16-32)--> i (k*l) |
||||
self.sfr = CondenseSFR( |
||||
growth_rate, |
||||
in_channels, |
||||
kernel_size=1, |
||||
groups=self.group_trans, |
||||
activation=activation, ) |
||||
if self.use_se: |
||||
self.se = SELayer(inplanes=growth_rate, reduction=1) |
||||
|
||||
def forward(self, x): |
||||
x_ = x |
||||
x = self.conv_1(x) |
||||
x = self.conv_2(x) |
||||
if self.use_se: |
||||
x = self.se(x) |
||||
sfr_feature = self.sfr(x) |
||||
y = x_ + sfr_feature |
||||
return paddle.concat([y, x], 1) |
||||
|
||||
|
||||
class _SFR_DenseBlock(nn.Sequential): |
||||
def __init__( |
||||
self, |
||||
num_layers, |
||||
in_channels, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se, ): |
||||
super(_SFR_DenseBlock, self).__init__() |
||||
for i in range(num_layers): |
||||
layer = _SFR_DenseLayer( |
||||
in_channels + i * growth_rate, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se, ) |
||||
self.add_sublayer("denselayer_%d" % (i + 1), layer) |
||||
|
||||
|
||||
class _Transition(nn.Layer): |
||||
def __init__(self): |
||||
super(_Transition, self).__init__() |
||||
self.pool = nn.AvgPool2D(kernel_size=2, stride=2) |
||||
|
||||
def forward(self, x): |
||||
x = self.pool(x) |
||||
return x |
||||
|
||||
|
||||
class CondenseNetV2(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
stages, |
||||
growth, |
||||
HS_start_block, |
||||
SE_start_block, |
||||
fc_channel, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
last_se_reduction, |
||||
in_channels=3, |
||||
class_num=1000, ): |
||||
super(CondenseNetV2, self).__init__() |
||||
self.stages = stages |
||||
self.growth = growth |
||||
self.in_channels = in_channels |
||||
self.class_num = class_num |
||||
self.last_se_reduction = last_se_reduction |
||||
assert len(self.stages) == len(self.growth) |
||||
self.progress = 0.0 |
||||
|
||||
self.init_stride = 2 |
||||
self.pool_size = 7 |
||||
|
||||
self.features = nn.Sequential() |
||||
# Initial nChannels should be 3 |
||||
self.num_features = 2 * self.growth[0] |
||||
# Dense-block 1 (224x224) |
||||
self.features.add_sublayer( |
||||
"init_conv", |
||||
nn.Conv2D( |
||||
in_channels, |
||||
self.num_features, |
||||
kernel_size=3, |
||||
stride=self.init_stride, |
||||
padding=1, |
||||
bias_attr=False, ), ) |
||||
for i in range(len(self.stages)): |
||||
activation = "HS" if i >= HS_start_block else "ReLU" |
||||
use_se = True if i >= SE_start_block else False |
||||
# Dense-block i |
||||
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck, |
||||
activation, use_se) |
||||
|
||||
self.fc = nn.Linear(self.num_features, fc_channel) |
||||
self.fc_act = HS() |
||||
|
||||
# Classifier layer |
||||
if class_num > 0: |
||||
self.classifier = nn.Linear(fc_channel, class_num) |
||||
self._initialize() |
||||
|
||||
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck, |
||||
activation, use_se): |
||||
# Check if ith is the last one |
||||
last = i == len(self.stages) - 1 |
||||
block = _SFR_DenseBlock( |
||||
num_layers=self.stages[i], |
||||
in_channels=self.num_features, |
||||
growth_rate=self.growth[i], |
||||
group_1x1=group_1x1, |
||||
group_3x3=group_3x3, |
||||
group_trans=group_trans, |
||||
bottleneck=bottleneck, |
||||
activation=activation, |
||||
use_se=use_se, ) |
||||
self.features.add_sublayer("denseblock_%d" % (i + 1), block) |
||||
self.num_features += self.stages[i] * self.growth[i] |
||||
if not last: |
||||
trans = _Transition() |
||||
self.features.add_sublayer("transition_%d" % (i + 1), trans) |
||||
else: |
||||
self.features.add_sublayer("norm_last", |
||||
nn.BatchNorm2D(self.num_features)) |
||||
self.features.add_sublayer("relu_last", nn.ReLU()) |
||||
self.features.add_sublayer("pool_last", |
||||
nn.AvgPool2D(self.pool_size)) |
||||
# if useSE: |
||||
self.features.add_sublayer( |
||||
"se_last", |
||||
SELayer( |
||||
self.num_features, reduction=self.last_se_reduction)) |
||||
|
||||
def forward(self, x): |
||||
features = self.features(x) |
||||
out = features.reshape((features.shape[0], features.shape[1] * |
||||
features.shape[2] * features.shape[3])) |
||||
out = self.fc(out) |
||||
out = self.fc_act(out) |
||||
|
||||
if self.class_num > 0: |
||||
out = self.classifier(out) |
||||
|
||||
return out |
||||
|
||||
def _initialize(self): |
||||
# Initialize |
||||
for m in self.sublayers(): |
||||
if isinstance(m, nn.Conv2D): |
||||
nn.initializer.KaimingNormal()(m.weight) |
||||
elif isinstance(m, nn.BatchNorm2D): |
||||
nn.initializer.Constant(value=1.0)(m.weight) |
||||
nn.initializer.Constant(value=0.0)(m.bias) |
||||
|
||||
|
||||
def CondenseNetV2_a(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[1, 1, 4, 6, 8], |
||||
growth=[8, 8, 16, 32, 64], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=828, |
||||
group_1x1=8, |
||||
group_3x3=8, |
||||
group_trans=8, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
||||
|
||||
|
||||
def CondenseNetV2_b(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[2, 4, 6, 8, 6], |
||||
growth=[6, 12, 24, 48, 96], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=1024, |
||||
group_1x1=6, |
||||
group_3x3=6, |
||||
group_trans=6, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
||||
|
||||
|
||||
def CondenseNetV2_c(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[4, 6, 8, 10, 8], |
||||
growth=[8, 16, 32, 64, 128], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=1024, |
||||
group_1x1=8, |
||||
group_3x3=8, |
||||
group_trans=8, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
""" |
||||
This code is based on https://github.com/AgentMaker/Paddle-Image-Models |
||||
Ths copyright of AgentMaker/Paddle-Image-Models is as follows: |
||||
Apache License [see LICENSE for details] |
||||
""" |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
|
||||
__all__ = ["CondenseNetV2_A", "CondenseNetV2_B", "CondenseNetV2_C"] |
||||
|
||||
|
||||
class SELayer(nn.Layer): |
||||
def __init__(self, inplanes, reduction=16): |
||||
super(SELayer, self).__init__() |
||||
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
||||
self.fc = nn.Sequential( |
||||
nn.Linear( |
||||
inplanes, inplanes // reduction, bias_attr=False), |
||||
nn.ReLU(), |
||||
nn.Linear( |
||||
inplanes // reduction, inplanes, bias_attr=False), |
||||
nn.Sigmoid(), ) |
||||
|
||||
def forward(self, x): |
||||
b, c, _, _ = x.shape |
||||
y = self.avg_pool(x).reshape((b, c)) |
||||
y = self.fc(y).reshape((b, c, 1, 1)) |
||||
return x * paddle.expand(y, shape=x.shape) |
||||
|
||||
|
||||
class HS(nn.Layer): |
||||
def __init__(self): |
||||
super(HS, self).__init__() |
||||
self.relu6 = nn.ReLU6() |
||||
|
||||
def forward(self, inputs): |
||||
return inputs * self.relu6(inputs + 3) / 6 |
||||
|
||||
|
||||
class Conv(nn.Sequential): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", |
||||
bn_momentum=0.9, ): |
||||
super(Conv, self).__init__() |
||||
self.add_sublayer( |
||||
"norm", nn.BatchNorm2D( |
||||
in_channels, momentum=bn_momentum)) |
||||
if activation == "ReLU": |
||||
self.add_sublayer("activation", nn.ReLU()) |
||||
elif activation == "HS": |
||||
self.add_sublayer("activation", HS()) |
||||
else: |
||||
raise NotImplementedError |
||||
self.add_sublayer( |
||||
"conv", |
||||
nn.Conv2D( |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size=kernel_size, |
||||
stride=stride, |
||||
padding=padding, |
||||
bias_attr=False, |
||||
groups=groups, ), ) |
||||
|
||||
|
||||
def ShuffleLayer(x, groups): |
||||
batchsize, num_channels, height, width = x.shape |
||||
channels_per_group = num_channels // groups |
||||
# Reshape |
||||
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
||||
# Transpose |
||||
x = x.transpose((0, 2, 1, 3, 4)) |
||||
# Reshape |
||||
x = x.reshape((batchsize, groups * channels_per_group, height, width)) |
||||
return x |
||||
|
||||
|
||||
def ShuffleLayerTrans(x, groups): |
||||
batchsize, num_channels, height, width = x.shape |
||||
channels_per_group = num_channels // groups |
||||
# Reshape |
||||
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
||||
# Transpose |
||||
x = x.transpose((0, 2, 1, 3, 4)) |
||||
# Reshape |
||||
x = x.reshape((batchsize, channels_per_group * groups, height, width)) |
||||
return x |
||||
|
||||
|
||||
class CondenseLGC(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", ): |
||||
super(CondenseLGC, self).__init__() |
||||
self.in_channels = in_channels |
||||
self.out_channels = out_channels |
||||
self.groups = groups |
||||
self.norm = nn.BatchNorm2D(self.in_channels) |
||||
if activation == "ReLU": |
||||
self.activation = nn.ReLU() |
||||
elif activation == "HS": |
||||
self.activation = HS() |
||||
else: |
||||
raise NotImplementedError |
||||
self.conv = nn.Conv2D( |
||||
self.in_channels, |
||||
self.out_channels, |
||||
kernel_size=kernel_size, |
||||
stride=stride, |
||||
padding=padding, |
||||
groups=self.groups, |
||||
bias_attr=False, ) |
||||
self.register_buffer( |
||||
"index", paddle.zeros( |
||||
(self.in_channels, ), dtype="int64")) |
||||
|
||||
def forward(self, x): |
||||
x = paddle.index_select(x, self.index, axis=1) |
||||
x = self.norm(x) |
||||
x = self.activation(x) |
||||
x = self.conv(x) |
||||
x = ShuffleLayer(x, self.groups) |
||||
return x |
||||
|
||||
|
||||
class CondenseSFR(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", ): |
||||
super(CondenseSFR, self).__init__() |
||||
self.in_channels = in_channels |
||||
self.out_channels = out_channels |
||||
self.groups = groups |
||||
self.norm = nn.BatchNorm2D(self.in_channels) |
||||
if activation == "ReLU": |
||||
self.activation = nn.ReLU() |
||||
elif activation == "HS": |
||||
self.activation = HS() |
||||
else: |
||||
raise NotImplementedError |
||||
self.conv = nn.Conv2D( |
||||
self.in_channels, |
||||
self.out_channels, |
||||
kernel_size=kernel_size, |
||||
padding=padding, |
||||
groups=self.groups, |
||||
bias_attr=False, |
||||
stride=stride, ) |
||||
self.register_buffer("index", |
||||
paddle.zeros( |
||||
(self.out_channels, self.out_channels))) |
||||
|
||||
def forward(self, x): |
||||
x = self.norm(x) |
||||
x = self.activation(x) |
||||
x = ShuffleLayerTrans(x, self.groups) |
||||
x = self.conv(x) # SIZE: N, C, H, W |
||||
N, C, H, W = x.shape |
||||
x = x.reshape((N, C, H * W)) |
||||
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
||||
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
||||
x = paddle.matmul(x, self.index) |
||||
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW |
||||
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW |
||||
return x |
||||
|
||||
|
||||
class _SFR_DenseLayer(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se=False, ): |
||||
super(_SFR_DenseLayer, self).__init__() |
||||
self.group_1x1 = group_1x1 |
||||
self.group_3x3 = group_3x3 |
||||
self.group_trans = group_trans |
||||
self.use_se = use_se |
||||
# 1x1 conv i --> b*k |
||||
self.conv_1 = CondenseLGC( |
||||
in_channels, |
||||
bottleneck * growth_rate, |
||||
kernel_size=1, |
||||
groups=self.group_1x1, |
||||
activation=activation, ) |
||||
# 3x3 conv b*k --> k |
||||
self.conv_2 = Conv( |
||||
bottleneck * growth_rate, |
||||
growth_rate, |
||||
kernel_size=3, |
||||
padding=1, |
||||
groups=self.group_3x3, |
||||
activation=activation, ) |
||||
# 1x1 res conv k(8-16-32)--> i (k*l) |
||||
self.sfr = CondenseSFR( |
||||
growth_rate, |
||||
in_channels, |
||||
kernel_size=1, |
||||
groups=self.group_trans, |
||||
activation=activation, ) |
||||
if self.use_se: |
||||
self.se = SELayer(inplanes=growth_rate, reduction=1) |
||||
|
||||
def forward(self, x): |
||||
x_ = x |
||||
x = self.conv_1(x) |
||||
x = self.conv_2(x) |
||||
if self.use_se: |
||||
x = self.se(x) |
||||
sfr_feature = self.sfr(x) |
||||
y = x_ + sfr_feature |
||||
return paddle.concat([y, x], 1) |
||||
|
||||
|
||||
class _SFR_DenseBlock(nn.Sequential): |
||||
def __init__( |
||||
self, |
||||
num_layers, |
||||
in_channels, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se, ): |
||||
super(_SFR_DenseBlock, self).__init__() |
||||
for i in range(num_layers): |
||||
layer = _SFR_DenseLayer( |
||||
in_channels + i * growth_rate, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se, ) |
||||
self.add_sublayer("denselayer_%d" % (i + 1), layer) |
||||
|
||||
|
||||
class _Transition(nn.Layer): |
||||
def __init__(self): |
||||
super(_Transition, self).__init__() |
||||
self.pool = nn.AvgPool2D(kernel_size=2, stride=2) |
||||
|
||||
def forward(self, x): |
||||
x = self.pool(x) |
||||
return x |
||||
|
||||
|
||||
class CondenseNetV2(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
stages, |
||||
growth, |
||||
HS_start_block, |
||||
SE_start_block, |
||||
fc_channel, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
last_se_reduction, |
||||
in_channels=3, |
||||
class_num=1000, ): |
||||
super(CondenseNetV2, self).__init__() |
||||
self.stages = stages |
||||
self.growth = growth |
||||
self.in_channels = in_channels |
||||
self.class_num = class_num |
||||
self.last_se_reduction = last_se_reduction |
||||
assert len(self.stages) == len(self.growth) |
||||
self.progress = 0.0 |
||||
|
||||
self.init_stride = 2 |
||||
self.pool_size = 7 |
||||
|
||||
self.features = nn.Sequential() |
||||
# Initial nChannels should be 3 |
||||
self.num_features = 2 * self.growth[0] |
||||
# Dense-block 1 (224x224) |
||||
self.features.add_sublayer( |
||||
"init_conv", |
||||
nn.Conv2D( |
||||
in_channels, |
||||
self.num_features, |
||||
kernel_size=3, |
||||
stride=self.init_stride, |
||||
padding=1, |
||||
bias_attr=False, ), ) |
||||
for i in range(len(self.stages)): |
||||
activation = "HS" if i >= HS_start_block else "ReLU" |
||||
use_se = True if i >= SE_start_block else False |
||||
# Dense-block i |
||||
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck, |
||||
activation, use_se) |
||||
|
||||
self.fc = nn.Linear(self.num_features, fc_channel) |
||||
self.fc_act = HS() |
||||
|
||||
# Classifier layer |
||||
if class_num > 0: |
||||
self.classifier = nn.Linear(fc_channel, class_num) |
||||
self._initialize() |
||||
|
||||
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck, |
||||
activation, use_se): |
||||
# Check if ith is the last one |
||||
last = i == len(self.stages) - 1 |
||||
block = _SFR_DenseBlock( |
||||
num_layers=self.stages[i], |
||||
in_channels=self.num_features, |
||||
growth_rate=self.growth[i], |
||||
group_1x1=group_1x1, |
||||
group_3x3=group_3x3, |
||||
group_trans=group_trans, |
||||
bottleneck=bottleneck, |
||||
activation=activation, |
||||
use_se=use_se, ) |
||||
self.features.add_sublayer("denseblock_%d" % (i + 1), block) |
||||
self.num_features += self.stages[i] * self.growth[i] |
||||
if not last: |
||||
trans = _Transition() |
||||
self.features.add_sublayer("transition_%d" % (i + 1), trans) |
||||
else: |
||||
self.features.add_sublayer("norm_last", |
||||
nn.BatchNorm2D(self.num_features)) |
||||
self.features.add_sublayer("relu_last", nn.ReLU()) |
||||
self.features.add_sublayer("pool_last", |
||||
nn.AvgPool2D(self.pool_size)) |
||||
# if useSE: |
||||
self.features.add_sublayer( |
||||
"se_last", |
||||
SELayer( |
||||
self.num_features, reduction=self.last_se_reduction)) |
||||
|
||||
def forward(self, x): |
||||
features = self.features(x) |
||||
out = features.reshape((features.shape[0], features.shape[1] * |
||||
features.shape[2] * features.shape[3])) |
||||
out = self.fc(out) |
||||
out = self.fc_act(out) |
||||
|
||||
if self.class_num > 0: |
||||
out = self.classifier(out) |
||||
|
||||
return out |
||||
|
||||
def _initialize(self): |
||||
# Initialize |
||||
for m in self.sublayers(): |
||||
if isinstance(m, nn.Conv2D): |
||||
nn.initializer.KaimingNormal()(m.weight) |
||||
elif isinstance(m, nn.BatchNorm2D): |
||||
nn.initializer.Constant(value=1.0)(m.weight) |
||||
nn.initializer.Constant(value=0.0)(m.bias) |
||||
|
||||
|
||||
def CondenseNetV2_A(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[1, 1, 4, 6, 8], |
||||
growth=[8, 8, 16, 32, 64], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=828, |
||||
group_1x1=8, |
||||
group_3x3=8, |
||||
group_trans=8, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
||||
|
||||
|
||||
def CondenseNetV2_B(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[2, 4, 6, 8, 6], |
||||
growth=[6, 12, 24, 48, 96], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=1024, |
||||
group_1x1=6, |
||||
group_3x3=6, |
||||
group_trans=6, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
||||
|
||||
|
||||
def CondenseNetV2_C(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[4, 6, 8, 10, 8], |
||||
growth=[8, 16, 32, 64, 128], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=1024, |
||||
group_1x1=8, |
||||
group_3x3=8, |
||||
group_trans=8, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
@ -0,0 +1,10 @@ |
||||
# Configurations of CondenseNet V2 with UCMerced dataset |
||||
|
||||
_base_: ../_base_/ucmerced.yaml |
||||
|
||||
save_dir: ./test_tipc/output/clas/condensenetv2/ |
||||
|
||||
model: !Node |
||||
type: CondenseNetV2 |
||||
args: |
||||
num_classes: 21 |
@ -0,0 +1,53 @@ |
||||
===========================train_params=========================== |
||||
model_name:clas:condensenetv2 |
||||
python:python |
||||
gpu_list:0|0,1 |
||||
use_gpu:null|null |
||||
--precision:null |
||||
--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=10 |
||||
--save_dir:adaptive |
||||
--train_batch_size:lite_train_lite_infer=16|lite_train_whole_infer=16|whole_train_whole_infer=16 |
||||
--model_path:null |
||||
--config:lite_train_lite_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml|lite_train_whole_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml|whole_train_whole_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml |
||||
train_model_name:best_model |
||||
null:null |
||||
## |
||||
trainer:norm |
||||
norm_train:test_tipc/run_task.py train clas |
||||
pact_train:null |
||||
fpgm_train:null |
||||
distill_train:null |
||||
null:null |
||||
null:null |
||||
## |
||||
===========================eval_params=========================== |
||||
eval:null |
||||
null:null |
||||
## |
||||
===========================export_params=========================== |
||||
--save_dir:adaptive |
||||
--model_dir:adaptive |
||||
--fixed_input_shape:[-1,3,256,256] |
||||
norm_export:deploy/export/export_model.py |
||||
quant_export:null |
||||
fpgm_export:null |
||||
distill_export:null |
||||
export1:null |
||||
export2:null |
||||
===========================infer_params=========================== |
||||
infer_model:null |
||||
infer_export:null |
||||
infer_quant:False |
||||
inference:test_tipc/infer.py |
||||
--device:cpu|gpu |
||||
--enable_mkldnn:True |
||||
--cpu_threads:6 |
||||
--batch_size:1 |
||||
--use_trt:False |
||||
--precision:fp32 |
||||
--model_dir:null |
||||
--config:null |
||||
--save_log_path:null |
||||
--benchmark:True |
||||
--model_name:condensenetv2 |
||||
null:null |
@ -1,10 +0,0 @@ |
||||
# Basic configurations of HRNet |
||||
|
||||
_base_: ../_base_/ucmerced.yaml |
||||
|
||||
save_dir: ./test_tipc/output/clas/hrnet/ |
||||
|
||||
model: !Node |
||||
type: HRNet_W18_C |
||||
args: |
||||
num_classes: 21 |
@ -0,0 +1,90 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# 场景分类模型CondenseNet V2训练示例脚本 |
||||
# 执行此脚本前,请确认已正确安装PaddleRS库 |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 数据集存放目录 |
||||
DATA_DIR = './data/ucmerced/' |
||||
# 训练集`file_list`文件路径 |
||||
TRAIN_FILE_LIST_PATH = './data/ucmerced/train.txt' |
||||
# 验证集`file_list`文件路径 |
||||
EVAL_FILE_LIST_PATH = './data/ucmerced/val.txt' |
||||
# 数据集类别信息文件路径 |
||||
LABEL_LIST_PATH = './data/ucmerced/labels.txt' |
||||
# 实验目录,保存输出的模型权重和结果 |
||||
EXP_DIR = './output/hrnet/' |
||||
|
||||
# 下载和解压UC Merced数据集 |
||||
pdrs.utils.download_and_decompress( |
||||
'https://paddlers.bj.bcebos.com/datasets/ucmerced.zip', path='./data/') |
||||
|
||||
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
||||
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
||||
# API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md |
||||
train_transforms = T.Compose([ |
||||
# 读取影像 |
||||
T.DecodeImg(), |
||||
# 将影像缩放到256x256大小 |
||||
T.Resize(target_size=256), |
||||
# 以50%的概率实施随机水平翻转 |
||||
T.RandomHorizontalFlip(prob=0.5), |
||||
# 以50%的概率实施随机垂直翻转 |
||||
T.RandomVerticalFlip(prob=0.5), |
||||
# 将数据归一化到[-1,1] |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
T.ArrangeClassifier('train') |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.DecodeImg(), |
||||
T.Resize(target_size=256), |
||||
# 验证阶段与训练阶段的数据归一化方式必须相同 |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
T.ArrangeClassifier('eval') |
||||
]) |
||||
|
||||
# 分别构建训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=TRAIN_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=EVAL_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 构建CondenseNet V2模型 |
||||
# 目前已支持的模型请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/intro/model_zoo.md |
||||
# 模型输入参数请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/classifier.py |
||||
model = pdrs.tasks.clas.CondenseNetV2(num_classes=len(train_dataset.labels)) |
||||
|
||||
# 执行模型训练 |
||||
model.train( |
||||
num_epochs=2, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=16, |
||||
eval_dataset=eval_dataset, |
||||
save_interval_epochs=1, |
||||
# 每多少次迭代记录一次日志 |
||||
log_interval_steps=50, |
||||
save_dir=EXP_DIR, |
||||
# 初始学习率大小 |
||||
learning_rate=0.01, |
||||
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
||||
early_stop=False, |
||||
# 是否启用VisualDL日志功能 |
||||
use_vdl=True, |
||||
# 指定从某个检查点继续训练 |
||||
resume_checkpoint=None) |
Loading…
Reference in new issue