Add CondenseNet V2

own
Bobholamovic 2 years ago
parent d51b683942
commit a895234700
  1. 884
      paddlers/rs_models/clas/condensenetv2.py
  2. 24
      paddlers/tasks/classifier.py
  3. 10
      test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml
  4. 53
      test_tipc/configs/clas/condensenetv2/train_infer_python.txt
  5. 10
      test_tipc/configs/clas/hrnet/hrnet.yaml
  6. 2
      test_tipc/configs/clas/hrnet/hrnet_ucmerced.yaml
  7. 35
      tests/rs_models/test_clas_models.py
  8. 90
      tutorials/train/classification/condensenetv2.py

@ -1,442 +1,442 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/AgentMaker/Paddle-Image-Models
Ths copyright of AgentMaker/Paddle-Image-Models is as follows:
Apache License [see LICENSE for details]
"""
import paddle
import paddle.nn as nn
__all__ = ["CondenseNetV2_a", "CondenseNetV2_b", "CondenseNetV2_c"]
class SELayer(nn.Layer):
def __init__(self, inplanes, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Sequential(
nn.Linear(
inplanes, inplanes // reduction, bias_attr=False),
nn.ReLU(),
nn.Linear(
inplanes // reduction, inplanes, bias_attr=False),
nn.Sigmoid(), )
def forward(self, x):
b, c, _, _ = x.shape
y = self.avg_pool(x).reshape((b, c))
y = self.fc(y).reshape((b, c, 1, 1))
return x * paddle.expand(y, shape=x.shape)
class HS(nn.Layer):
def __init__(self):
super(HS, self).__init__()
self.relu6 = nn.ReLU6()
def forward(self, inputs):
return inputs * self.relu6(inputs + 3) / 6
class Conv(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU",
bn_momentum=0.9, ):
super(Conv, self).__init__()
self.add_sublayer(
"norm", nn.BatchNorm2D(
in_channels, momentum=bn_momentum))
if activation == "ReLU":
self.add_sublayer("activation", nn.ReLU())
elif activation == "HS":
self.add_sublayer("activation", HS())
else:
raise NotImplementedError
self.add_sublayer(
"conv",
nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias_attr=False,
groups=groups, ), )
def ShuffleLayer(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# Reshape
x = x.reshape((batchsize, groups, channels_per_group, height, width))
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# Reshape
x = x.reshape((batchsize, groups * channels_per_group, height, width))
return x
def ShuffleLayerTrans(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# Reshape
x = x.reshape((batchsize, channels_per_group, groups, height, width))
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# Reshape
x = x.reshape((batchsize, channels_per_group * groups, height, width))
return x
class CondenseLGC(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU", ):
super(CondenseLGC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.norm = nn.BatchNorm2D(self.in_channels)
if activation == "ReLU":
self.activation = nn.ReLU()
elif activation == "HS":
self.activation = HS()
else:
raise NotImplementedError
self.conv = nn.Conv2D(
self.in_channels,
self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=self.groups,
bias_attr=False, )
self.register_buffer(
"index", paddle.zeros(
(self.in_channels, ), dtype="int64"))
def forward(self, x):
x = paddle.index_select(x, self.index, axis=1)
x = self.norm(x)
x = self.activation(x)
x = self.conv(x)
x = ShuffleLayer(x, self.groups)
return x
class CondenseSFR(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU", ):
super(CondenseSFR, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.norm = nn.BatchNorm2D(self.in_channels)
if activation == "ReLU":
self.activation = nn.ReLU()
elif activation == "HS":
self.activation = HS()
else:
raise NotImplementedError
self.conv = nn.Conv2D(
self.in_channels,
self.out_channels,
kernel_size=kernel_size,
padding=padding,
groups=self.groups,
bias_attr=False,
stride=stride, )
self.register_buffer("index",
paddle.zeros(
(self.out_channels, self.out_channels)))
def forward(self, x):
x = self.norm(x)
x = self.activation(x)
x = ShuffleLayerTrans(x, self.groups)
x = self.conv(x) # SIZE: N, C, H, W
N, C, H, W = x.shape
x = x.reshape((N, C, H * W))
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C
x = paddle.matmul(x, self.index)
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW
return x
class _SFR_DenseLayer(nn.Layer):
def __init__(
self,
in_channels,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se=False, ):
super(_SFR_DenseLayer, self).__init__()
self.group_1x1 = group_1x1
self.group_3x3 = group_3x3
self.group_trans = group_trans
self.use_se = use_se
# 1x1 conv i --> b*k
self.conv_1 = CondenseLGC(
in_channels,
bottleneck * growth_rate,
kernel_size=1,
groups=self.group_1x1,
activation=activation, )
# 3x3 conv b*k --> k
self.conv_2 = Conv(
bottleneck * growth_rate,
growth_rate,
kernel_size=3,
padding=1,
groups=self.group_3x3,
activation=activation, )
# 1x1 res conv k(8-16-32)--> i (k*l)
self.sfr = CondenseSFR(
growth_rate,
in_channels,
kernel_size=1,
groups=self.group_trans,
activation=activation, )
if self.use_se:
self.se = SELayer(inplanes=growth_rate, reduction=1)
def forward(self, x):
x_ = x
x = self.conv_1(x)
x = self.conv_2(x)
if self.use_se:
x = self.se(x)
sfr_feature = self.sfr(x)
y = x_ + sfr_feature
return paddle.concat([y, x], 1)
class _SFR_DenseBlock(nn.Sequential):
def __init__(
self,
num_layers,
in_channels,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se, ):
super(_SFR_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _SFR_DenseLayer(
in_channels + i * growth_rate,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se, )
self.add_sublayer("denselayer_%d" % (i + 1), layer)
class _Transition(nn.Layer):
def __init__(self):
super(_Transition, self).__init__()
self.pool = nn.AvgPool2D(kernel_size=2, stride=2)
def forward(self, x):
x = self.pool(x)
return x
class CondenseNetV2(nn.Layer):
def __init__(
self,
stages,
growth,
HS_start_block,
SE_start_block,
fc_channel,
group_1x1,
group_3x3,
group_trans,
bottleneck,
last_se_reduction,
in_channels=3,
class_num=1000, ):
super(CondenseNetV2, self).__init__()
self.stages = stages
self.growth = growth
self.in_channels = in_channels
self.class_num = class_num
self.last_se_reduction = last_se_reduction
assert len(self.stages) == len(self.growth)
self.progress = 0.0
self.init_stride = 2
self.pool_size = 7
self.features = nn.Sequential()
# Initial nChannels should be 3
self.num_features = 2 * self.growth[0]
# Dense-block 1 (224x224)
self.features.add_sublayer(
"init_conv",
nn.Conv2D(
in_channels,
self.num_features,
kernel_size=3,
stride=self.init_stride,
padding=1,
bias_attr=False, ), )
for i in range(len(self.stages)):
activation = "HS" if i >= HS_start_block else "ReLU"
use_se = True if i >= SE_start_block else False
# Dense-block i
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck,
activation, use_se)
self.fc = nn.Linear(self.num_features, fc_channel)
self.fc_act = HS()
# Classifier layer
if class_num > 0:
self.classifier = nn.Linear(fc_channel, class_num)
self._initialize()
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck,
activation, use_se):
# Check if ith is the last one
last = i == len(self.stages) - 1
block = _SFR_DenseBlock(
num_layers=self.stages[i],
in_channels=self.num_features,
growth_rate=self.growth[i],
group_1x1=group_1x1,
group_3x3=group_3x3,
group_trans=group_trans,
bottleneck=bottleneck,
activation=activation,
use_se=use_se, )
self.features.add_sublayer("denseblock_%d" % (i + 1), block)
self.num_features += self.stages[i] * self.growth[i]
if not last:
trans = _Transition()
self.features.add_sublayer("transition_%d" % (i + 1), trans)
else:
self.features.add_sublayer("norm_last",
nn.BatchNorm2D(self.num_features))
self.features.add_sublayer("relu_last", nn.ReLU())
self.features.add_sublayer("pool_last",
nn.AvgPool2D(self.pool_size))
# if useSE:
self.features.add_sublayer(
"se_last",
SELayer(
self.num_features, reduction=self.last_se_reduction))
def forward(self, x):
features = self.features(x)
out = features.reshape((features.shape[0], features.shape[1] *
features.shape[2] * features.shape[3]))
out = self.fc(out)
out = self.fc_act(out)
if self.class_num > 0:
out = self.classifier(out)
return out
def _initialize(self):
# Initialize
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
nn.initializer.KaimingNormal()(m.weight)
elif isinstance(m, nn.BatchNorm2D):
nn.initializer.Constant(value=1.0)(m.weight)
nn.initializer.Constant(value=0.0)(m.bias)
def CondenseNetV2_a(**kwargs):
model = CondenseNetV2(
stages=[1, 1, 4, 6, 8],
growth=[8, 8, 16, 32, 64],
HS_start_block=2,
SE_start_block=3,
fc_channel=828,
group_1x1=8,
group_3x3=8,
group_trans=8,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model
def CondenseNetV2_b(**kwargs):
model = CondenseNetV2(
stages=[2, 4, 6, 8, 6],
growth=[6, 12, 24, 48, 96],
HS_start_block=2,
SE_start_block=3,
fc_channel=1024,
group_1x1=6,
group_3x3=6,
group_trans=6,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model
def CondenseNetV2_c(**kwargs):
model = CondenseNetV2(
stages=[4, 6, 8, 10, 8],
growth=[8, 16, 32, 64, 128],
HS_start_block=2,
SE_start_block=3,
fc_channel=1024,
group_1x1=8,
group_3x3=8,
group_trans=8,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/AgentMaker/Paddle-Image-Models
Ths copyright of AgentMaker/Paddle-Image-Models is as follows:
Apache License [see LICENSE for details]
"""
import paddle
import paddle.nn as nn
__all__ = ["CondenseNetV2_A", "CondenseNetV2_B", "CondenseNetV2_C"]
class SELayer(nn.Layer):
def __init__(self, inplanes, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Sequential(
nn.Linear(
inplanes, inplanes // reduction, bias_attr=False),
nn.ReLU(),
nn.Linear(
inplanes // reduction, inplanes, bias_attr=False),
nn.Sigmoid(), )
def forward(self, x):
b, c, _, _ = x.shape
y = self.avg_pool(x).reshape((b, c))
y = self.fc(y).reshape((b, c, 1, 1))
return x * paddle.expand(y, shape=x.shape)
class HS(nn.Layer):
def __init__(self):
super(HS, self).__init__()
self.relu6 = nn.ReLU6()
def forward(self, inputs):
return inputs * self.relu6(inputs + 3) / 6
class Conv(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU",
bn_momentum=0.9, ):
super(Conv, self).__init__()
self.add_sublayer(
"norm", nn.BatchNorm2D(
in_channels, momentum=bn_momentum))
if activation == "ReLU":
self.add_sublayer("activation", nn.ReLU())
elif activation == "HS":
self.add_sublayer("activation", HS())
else:
raise NotImplementedError
self.add_sublayer(
"conv",
nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias_attr=False,
groups=groups, ), )
def ShuffleLayer(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# Reshape
x = x.reshape((batchsize, groups, channels_per_group, height, width))
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# Reshape
x = x.reshape((batchsize, groups * channels_per_group, height, width))
return x
def ShuffleLayerTrans(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# Reshape
x = x.reshape((batchsize, channels_per_group, groups, height, width))
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# Reshape
x = x.reshape((batchsize, channels_per_group * groups, height, width))
return x
class CondenseLGC(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU", ):
super(CondenseLGC, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.norm = nn.BatchNorm2D(self.in_channels)
if activation == "ReLU":
self.activation = nn.ReLU()
elif activation == "HS":
self.activation = HS()
else:
raise NotImplementedError
self.conv = nn.Conv2D(
self.in_channels,
self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=self.groups,
bias_attr=False, )
self.register_buffer(
"index", paddle.zeros(
(self.in_channels, ), dtype="int64"))
def forward(self, x):
x = paddle.index_select(x, self.index, axis=1)
x = self.norm(x)
x = self.activation(x)
x = self.conv(x)
x = ShuffleLayer(x, self.groups)
return x
class CondenseSFR(nn.Layer):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
groups=1,
activation="ReLU", ):
super(CondenseSFR, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.norm = nn.BatchNorm2D(self.in_channels)
if activation == "ReLU":
self.activation = nn.ReLU()
elif activation == "HS":
self.activation = HS()
else:
raise NotImplementedError
self.conv = nn.Conv2D(
self.in_channels,
self.out_channels,
kernel_size=kernel_size,
padding=padding,
groups=self.groups,
bias_attr=False,
stride=stride, )
self.register_buffer("index",
paddle.zeros(
(self.out_channels, self.out_channels)))
def forward(self, x):
x = self.norm(x)
x = self.activation(x)
x = ShuffleLayerTrans(x, self.groups)
x = self.conv(x) # SIZE: N, C, H, W
N, C, H, W = x.shape
x = x.reshape((N, C, H * W))
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C
x = paddle.matmul(x, self.index)
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW
return x
class _SFR_DenseLayer(nn.Layer):
def __init__(
self,
in_channels,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se=False, ):
super(_SFR_DenseLayer, self).__init__()
self.group_1x1 = group_1x1
self.group_3x3 = group_3x3
self.group_trans = group_trans
self.use_se = use_se
# 1x1 conv i --> b*k
self.conv_1 = CondenseLGC(
in_channels,
bottleneck * growth_rate,
kernel_size=1,
groups=self.group_1x1,
activation=activation, )
# 3x3 conv b*k --> k
self.conv_2 = Conv(
bottleneck * growth_rate,
growth_rate,
kernel_size=3,
padding=1,
groups=self.group_3x3,
activation=activation, )
# 1x1 res conv k(8-16-32)--> i (k*l)
self.sfr = CondenseSFR(
growth_rate,
in_channels,
kernel_size=1,
groups=self.group_trans,
activation=activation, )
if self.use_se:
self.se = SELayer(inplanes=growth_rate, reduction=1)
def forward(self, x):
x_ = x
x = self.conv_1(x)
x = self.conv_2(x)
if self.use_se:
x = self.se(x)
sfr_feature = self.sfr(x)
y = x_ + sfr_feature
return paddle.concat([y, x], 1)
class _SFR_DenseBlock(nn.Sequential):
def __init__(
self,
num_layers,
in_channels,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se, ):
super(_SFR_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _SFR_DenseLayer(
in_channels + i * growth_rate,
growth_rate,
group_1x1,
group_3x3,
group_trans,
bottleneck,
activation,
use_se, )
self.add_sublayer("denselayer_%d" % (i + 1), layer)
class _Transition(nn.Layer):
def __init__(self):
super(_Transition, self).__init__()
self.pool = nn.AvgPool2D(kernel_size=2, stride=2)
def forward(self, x):
x = self.pool(x)
return x
class CondenseNetV2(nn.Layer):
def __init__(
self,
stages,
growth,
HS_start_block,
SE_start_block,
fc_channel,
group_1x1,
group_3x3,
group_trans,
bottleneck,
last_se_reduction,
in_channels=3,
class_num=1000, ):
super(CondenseNetV2, self).__init__()
self.stages = stages
self.growth = growth
self.in_channels = in_channels
self.class_num = class_num
self.last_se_reduction = last_se_reduction
assert len(self.stages) == len(self.growth)
self.progress = 0.0
self.init_stride = 2
self.pool_size = 7
self.features = nn.Sequential()
# Initial nChannels should be 3
self.num_features = 2 * self.growth[0]
# Dense-block 1 (224x224)
self.features.add_sublayer(
"init_conv",
nn.Conv2D(
in_channels,
self.num_features,
kernel_size=3,
stride=self.init_stride,
padding=1,
bias_attr=False, ), )
for i in range(len(self.stages)):
activation = "HS" if i >= HS_start_block else "ReLU"
use_se = True if i >= SE_start_block else False
# Dense-block i
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck,
activation, use_se)
self.fc = nn.Linear(self.num_features, fc_channel)
self.fc_act = HS()
# Classifier layer
if class_num > 0:
self.classifier = nn.Linear(fc_channel, class_num)
self._initialize()
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck,
activation, use_se):
# Check if ith is the last one
last = i == len(self.stages) - 1
block = _SFR_DenseBlock(
num_layers=self.stages[i],
in_channels=self.num_features,
growth_rate=self.growth[i],
group_1x1=group_1x1,
group_3x3=group_3x3,
group_trans=group_trans,
bottleneck=bottleneck,
activation=activation,
use_se=use_se, )
self.features.add_sublayer("denseblock_%d" % (i + 1), block)
self.num_features += self.stages[i] * self.growth[i]
if not last:
trans = _Transition()
self.features.add_sublayer("transition_%d" % (i + 1), trans)
else:
self.features.add_sublayer("norm_last",
nn.BatchNorm2D(self.num_features))
self.features.add_sublayer("relu_last", nn.ReLU())
self.features.add_sublayer("pool_last",
nn.AvgPool2D(self.pool_size))
# if useSE:
self.features.add_sublayer(
"se_last",
SELayer(
self.num_features, reduction=self.last_se_reduction))
def forward(self, x):
features = self.features(x)
out = features.reshape((features.shape[0], features.shape[1] *
features.shape[2] * features.shape[3]))
out = self.fc(out)
out = self.fc_act(out)
if self.class_num > 0:
out = self.classifier(out)
return out
def _initialize(self):
# Initialize
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
nn.initializer.KaimingNormal()(m.weight)
elif isinstance(m, nn.BatchNorm2D):
nn.initializer.Constant(value=1.0)(m.weight)
nn.initializer.Constant(value=0.0)(m.bias)
def CondenseNetV2_A(**kwargs):
model = CondenseNetV2(
stages=[1, 1, 4, 6, 8],
growth=[8, 8, 16, 32, 64],
HS_start_block=2,
SE_start_block=3,
fc_channel=828,
group_1x1=8,
group_3x3=8,
group_trans=8,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model
def CondenseNetV2_B(**kwargs):
model = CondenseNetV2(
stages=[2, 4, 6, 8, 6],
growth=[6, 12, 24, 48, 96],
HS_start_block=2,
SE_start_block=3,
fc_channel=1024,
group_1x1=6,
group_3x3=6,
group_trans=6,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model
def CondenseNetV2_C(**kwargs):
model = CondenseNetV2(
stages=[4, 6, 8, 10, 8],
growth=[8, 16, 32, 64, 128],
HS_start_block=2,
SE_start_block=3,
fc_channel=1024,
group_1x1=8,
group_3x3=8,
group_trans=8,
bottleneck=4,
last_se_reduction=16,
**kwargs)
return model

@ -34,9 +34,7 @@ from paddlers.utils.checkpoint import cls_pretrain_weights_dict
from paddlers.transforms import Resize, decode_image
from .base import BaseModel
__all__ = [
"ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C", "CondenseNetV2_b"
]
__all__ = ["ResNet50_vd", "MobileNetV3", "HRNet", "CondenseNetV2"]
class BaseClassifier(BaseModel):
@ -600,13 +598,13 @@ class ResNet50_vd(BaseClassifier):
**params)
class MobileNetV3_small_x1_0(BaseClassifier):
class MobileNetV3(BaseClassifier):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(MobileNetV3_small_x1_0, self).__init__(
super(MobileNetV3, self).__init__(
model_name='MobileNetV3_small_x1_0',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
@ -614,13 +612,13 @@ class MobileNetV3_small_x1_0(BaseClassifier):
**params)
class HRNet_W18_C(BaseClassifier):
class HRNet(BaseClassifier):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(HRNet_W18_C, self).__init__(
super(HRNet, self).__init__(
model_name='HRNet_W18_C',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
@ -628,15 +626,21 @@ class HRNet_W18_C(BaseClassifier):
**params)
class CondenseNetV2_b(BaseClassifier):
class CondenseNetV2(BaseClassifier):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_chnanels=3,
arch='A',
**params):
super(CondenseNetV2_b, self).__init__(
model_name='CondenseNetV2_b',
if arch not in ('A', 'B', 'C'):
raise ValueError("{} is not a supported architecture.".format(arch))
model_name = 'CondenseNetV2_' + arch
super(CondenseNetV2, self).__init__(
model_name=model_name,
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
in_channels=in_channels,
**params)

@ -0,0 +1,10 @@
# Configurations of CondenseNet V2 with UCMerced dataset
_base_: ../_base_/ucmerced.yaml
save_dir: ./test_tipc/output/clas/condensenetv2/
model: !Node
type: CondenseNetV2
args:
num_classes: 21

@ -0,0 +1,53 @@
===========================train_params===========================
model_name:clas:condensenetv2
python:python
gpu_list:0|0,1
use_gpu:null|null
--precision:null
--num_epochs:lite_train_lite_infer=3|lite_train_whole_infer=3|whole_train_whole_infer=10
--save_dir:adaptive
--train_batch_size:lite_train_lite_infer=16|lite_train_whole_infer=16|whole_train_whole_infer=16
--model_path:null
--config:lite_train_lite_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml|lite_train_whole_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml|whole_train_whole_infer=./test_tipc/configs/clas/condensenetv2/condensenetv2_ucmerced.yaml
train_model_name:best_model
null:null
##
trainer:norm
norm_train:test_tipc/run_task.py train clas
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================export_params===========================
--save_dir:adaptive
--model_dir:adaptive
--fixed_input_shape:[-1,3,256,256]
norm_export:deploy/export/export_model.py
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
===========================infer_params===========================
infer_model:null
infer_export:null
infer_quant:False
inference:test_tipc/infer.py
--device:cpu|gpu
--enable_mkldnn:True
--cpu_threads:6
--batch_size:1
--use_trt:False
--precision:fp32
--model_dir:null
--config:null
--save_log_path:null
--benchmark:True
--model_name:condensenetv2
null:null

@ -1,10 +0,0 @@
# Basic configurations of HRNet
_base_: ../_base_/ucmerced.yaml
save_dir: ./test_tipc/output/clas/hrnet/
model: !Node
type: HRNet_W18_C
args:
num_classes: 21

@ -5,6 +5,6 @@ _base_: ../_base_/ucmerced.yaml
save_dir: ./test_tipc/output/clas/hrnet/
model: !Node
type: HRNet_W18_C
type: HRNet
args:
num_classes: 21

@ -18,7 +18,7 @@ from rs_models.test_model import TestModel
__all__ = []
class TestCDModel(TestModel):
class TestClasModel(TestModel):
DEFAULT_HW = (224, 224)
def check_output(self, output, target):
@ -36,3 +36,36 @@ class TestCDModel(TestModel):
def set_targets(self):
self.targets = [[self.DEFAULT_BATCH_SIZE, spec.get('num_classes', 2)]
for spec in self.specs]
class TestCondenseNetV2AModel(TestClasModel):
MODEL_CLASS = paddlers.rs_models.clas.CondenseNetV2_A
def set_specs(self):
self.specs = [
dict(in_channels=3, num_classes=2),
dict(in_channels=10, num_classes=2),
dict(in_channels=3, num_classes=100)
] # yapf: disable
class TestCondenseNetV2BModel(TestClasModel):
MODEL_CLASS = paddlers.rs_models.clas.CondenseNetV2_B
def set_specs(self):
self.specs = [
dict(in_channels=3, num_classes=2),
dict(in_channels=10, num_classes=2),
dict(in_channels=3, num_classes=100)
] # yapf: disable
class TestCondenseNetV2CModel(TestClasModel):
MODEL_CLASS = paddlers.rs_models.clas.CondenseNetV2_C
def set_specs(self):
self.specs = [
dict(in_channels=3, num_classes=2),
dict(in_channels=10, num_classes=2),
dict(in_channels=3, num_classes=100)
] # yapf: disable

@ -0,0 +1,90 @@
#!/usr/bin/env python
# 场景分类模型CondenseNet V2训练示例脚本
# 执行此脚本前,请确认已正确安装PaddleRS库
import paddlers as pdrs
from paddlers import transforms as T
# 数据集存放目录
DATA_DIR = './data/ucmerced/'
# 训练集`file_list`文件路径
TRAIN_FILE_LIST_PATH = './data/ucmerced/train.txt'
# 验证集`file_list`文件路径
EVAL_FILE_LIST_PATH = './data/ucmerced/val.txt'
# 数据集类别信息文件路径
LABEL_LIST_PATH = './data/ucmerced/labels.txt'
# 实验目录,保存输出的模型权重和结果
EXP_DIR = './output/hrnet/'
# 下载和解压UC Merced数据集
pdrs.utils.download_and_decompress(
'https://paddlers.bj.bcebos.com/datasets/ucmerced.zip', path='./data/')
# 定义训练和验证时使用的数据变换(数据增强、预处理等)
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行
# API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md
train_transforms = T.Compose([
# 读取影像
T.DecodeImg(),
# 将影像缩放到256x256大小
T.Resize(target_size=256),
# 以50%的概率实施随机水平翻转
T.RandomHorizontalFlip(prob=0.5),
# 以50%的概率实施随机垂直翻转
T.RandomVerticalFlip(prob=0.5),
# 将数据归一化到[-1,1]
T.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
T.ArrangeClassifier('train')
])
eval_transforms = T.Compose([
T.DecodeImg(),
T.Resize(target_size=256),
# 验证阶段与训练阶段的数据归一化方式必须相同
T.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
T.ArrangeClassifier('eval')
])
# 分别构建训练和验证所用的数据集
train_dataset = pdrs.datasets.ClasDataset(
data_dir=DATA_DIR,
file_list=TRAIN_FILE_LIST_PATH,
label_list=LABEL_LIST_PATH,
transforms=train_transforms,
num_workers=0,
shuffle=True)
eval_dataset = pdrs.datasets.ClasDataset(
data_dir=DATA_DIR,
file_list=EVAL_FILE_LIST_PATH,
label_list=LABEL_LIST_PATH,
transforms=eval_transforms,
num_workers=0,
shuffle=False)
# 构建CondenseNet V2模型
# 目前已支持的模型请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/intro/model_zoo.md
# 模型输入参数请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/paddlers/tasks/classifier.py
model = pdrs.tasks.clas.CondenseNetV2(num_classes=len(train_dataset.labels))
# 执行模型训练
model.train(
num_epochs=2,
train_dataset=train_dataset,
train_batch_size=16,
eval_dataset=eval_dataset,
save_interval_epochs=1,
# 每多少次迭代记录一次日志
log_interval_steps=50,
save_dir=EXP_DIR,
# 初始学习率大小
learning_rate=0.01,
# 是否使用early stopping策略,当精度不再改善时提前终止训练
early_stop=False,
# 是否启用VisualDL日志功能
use_vdl=True,
# 指定从某个检查点继续训练
resume_checkpoint=None)
Loading…
Cancel
Save