commit
a86e32f2fc
7 changed files with 49 additions and 92 deletions
@ -1,15 +0,0 @@ |
|||||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
||||||
# |
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
||||||
# you may not use this file except in compliance with the License. |
|
||||||
# You may obtain a copy of the License at |
|
||||||
# |
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0 |
|
||||||
# |
|
||||||
# Unless required by applicable law or agreed to in writing, software |
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS, |
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
||||||
# See the License for the specific language governing permissions and |
|
||||||
# limitations under the License. |
|
||||||
|
|
||||||
from .detector import * |
|
@ -1,54 +0,0 @@ |
|||||||
import sys |
|
||||||
|
|
||||||
sys.path.append("/ssd2/pengjuncai/PaddleRS") |
|
||||||
|
|
||||||
import paddlers as pdrs |
|
||||||
from paddlers import transforms as T |
|
||||||
|
|
||||||
train_transforms = T.Compose([ |
|
||||||
T.MixupImage(mixup_epoch=-1), T.RandomDistort(), |
|
||||||
T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(), |
|
||||||
T.RandomHorizontalFlip(), T.BatchRandomResize( |
|
||||||
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608], |
|
||||||
interp='RANDOM'), T.Normalize( |
|
||||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
||||||
]) |
|
||||||
|
|
||||||
eval_transforms = T.Compose([ |
|
||||||
T.Resize( |
|
||||||
target_size=608, interp='CUBIC'), T.Normalize( |
|
||||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
||||||
]) |
|
||||||
|
|
||||||
|
|
||||||
train_dataset = pdrs.datasets.VOCDetection( |
|
||||||
data_dir='insect_det', |
|
||||||
file_list='insect_det/train_list.txt', |
|
||||||
label_list='insect_det/labels.txt', |
|
||||||
transforms=train_transforms, |
|
||||||
shuffle=True) |
|
||||||
|
|
||||||
eval_dataset = pdrs.datasets.VOCDetection( |
|
||||||
data_dir='insect_det', |
|
||||||
file_list='insect_det/val_list.txt', |
|
||||||
label_list='insect_det/labels.txt', |
|
||||||
transforms=eval_transforms, |
|
||||||
shuffle=False) |
|
||||||
|
|
||||||
|
|
||||||
num_classes = len(train_dataset.labels) |
|
||||||
model = pdrs.tasks.det.PPYOLO(num_classes=num_classes, backbone='ResNet50_vd_dcn') |
|
||||||
|
|
||||||
model.train( |
|
||||||
num_epochs=200, |
|
||||||
train_dataset=train_dataset, |
|
||||||
train_batch_size=8, |
|
||||||
eval_dataset=eval_dataset, |
|
||||||
pretrain_weights='COCO', |
|
||||||
learning_rate=0.005 / 12, |
|
||||||
warmup_steps=500, |
|
||||||
warmup_start_lr=0.0, |
|
||||||
save_interval_epochs=5, |
|
||||||
lr_decay_epochs=[85, 135], |
|
||||||
save_dir='output/ppyolo_r50vd_dcn', |
|
||||||
use_vdl=True) |
|
Loading…
Reference in new issue