Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleRS into develop
commit
a8029342f6
6 changed files with 1 additions and 270 deletions
Before Width: | Height: | Size: 232 KiB After Width: | Height: | Size: 282 KiB |
@ -1,90 +0,0 @@ |
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
||||
# |
||||
#Licensed under the Apache License, Version 2.0 (the "License"); |
||||
#you may not use this file except in compliance with the License. |
||||
#You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
#Unless required by applicable law or agreed to in writing, software |
||||
#distributed under the License is distributed on an "AS IS" BASIS, |
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
#See the License for the specific language governing permissions and |
||||
#limitations under the License. |
||||
|
||||
import os |
||||
import numpy as np |
||||
from PIL import Image |
||||
|
||||
import paddle |
||||
from ppgan.models.generators import DRNGenerator |
||||
from ppgan.utils.download import get_path_from_url |
||||
from ppgan.utils.logger import get_logger |
||||
|
||||
from .base_predictor import BasePredictor |
||||
|
||||
REALSR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/DRNSx4.pdparams' |
||||
|
||||
|
||||
class DRNPredictor(BasePredictor): |
||||
def __init__(self, output='output', weight_path=None): |
||||
self.input = input |
||||
self.output = os.path.join(output, |
||||
'DRN') #定义超分的结果保存的路径,为output路径+模型名所在文件夹 |
||||
self.model = DRNGenerator((2, 4)) # 实例化模型 |
||||
if weight_path is None: |
||||
weight_path = get_path_from_url(REALSR_WEIGHT_URL) |
||||
state_dict = paddle.load(weight_path) #加载权重 |
||||
state_dict = state_dict['generator'] |
||||
self.model.load_dict(state_dict) |
||||
self.model.eval() |
||||
|
||||
# 标准化 |
||||
def norm(self, img): |
||||
img = np.array(img).transpose([2, 0, 1]).astype('float32') / 1.0 |
||||
return img.astype('float32') |
||||
|
||||
# 去标准化 |
||||
def denorm(self, img): |
||||
img = img.transpose((1, 2, 0)) |
||||
return (img * 1).clip(0, 255).astype('uint8') |
||||
|
||||
# 对图片输入进行预测,输入可以是图像路径,也可以是cv2读取的矩阵,或者PIL读取的图像文件 |
||||
def run_image(self, img): |
||||
if isinstance(img, str): |
||||
ori_img = Image.open(img).convert('RGB') |
||||
elif isinstance(img, np.ndarray): |
||||
ori_img = Image.fromarray(img).convert('RGB') |
||||
elif isinstance(img, Image.Image): |
||||
ori_img = img |
||||
|
||||
img = self.norm(ori_img) #图像标准化 |
||||
x = paddle.to_tensor(img[np.newaxis, ...]) #转成tensor |
||||
with paddle.no_grad(): |
||||
out = self.model( |
||||
x |
||||
)[2] # 执行预测,DRN模型会输出三个tensor,第一个是原始低分辨率影像,第二个是放大两倍,第三个才是我们所需要的最后的结果 |
||||
|
||||
pred_img = self.denorm(out.numpy()[0]) #tensor转成numpy的array并去标准化 |
||||
pred_img = Image.fromarray(pred_img) # array转图像 |
||||
return pred_img |
||||
|
||||
#输入图像文件路径 |
||||
def run(self, input): |
||||
# 如果输出路径不存在则新建一个 |
||||
if not os.path.exists(self.output): |
||||
os.makedirs(self.output) |
||||
|
||||
pred_img = self.run_image(input) #对输入的图片进行预测 |
||||
out_path = None |
||||
if self.output: |
||||
try: |
||||
base_name = os.path.splitext(os.path.basename(input))[0] |
||||
except: |
||||
base_name = 'result' |
||||
out_path = os.path.join(self.output, base_name + '.png') #保存路径 |
||||
pred_img.save(out_path) #保存输出图片 |
||||
logger = get_logger() |
||||
logger.info('Image saved to {}'.format(out_path)) |
||||
|
||||
return pred_img, out_path |
@ -1,88 +0,0 @@ |
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
||||
# |
||||
#Licensed under the Apache License, Version 2.0 (the "License"); |
||||
#you may not use this file except in compliance with the License. |
||||
#You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
#Unless required by applicable law or agreed to in writing, software |
||||
#distributed under the License is distributed on an "AS IS" BASIS, |
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
#See the License for the specific language governing permissions and |
||||
#limitations under the License. |
||||
|
||||
import os |
||||
import numpy as np |
||||
from PIL import Image |
||||
|
||||
import paddle |
||||
from ppgan.models.generators import LESRCNNGenerator |
||||
from ppgan.utils.download import get_path_from_url |
||||
from ppgan.utils.logger import get_logger |
||||
|
||||
from .base_predictor import BasePredictor |
||||
|
||||
REALSR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/lesrcnn_x4.pdparams' |
||||
|
||||
|
||||
class LESRCNNPredictor(BasePredictor): |
||||
def __init__(self, output='output', weight_path=None): |
||||
self.input = input |
||||
self.output = os.path.join(output, |
||||
'LESRCNN') #定义超分的结果保存的路径,为output路径+模型名所在文件夹 |
||||
self.model = LESRCNNGenerator() # 实例化模型 |
||||
if weight_path is None: |
||||
weight_path = get_path_from_url(REALSR_WEIGHT_URL) |
||||
state_dict = paddle.load(weight_path) #加载权重 |
||||
state_dict = state_dict['generator'] |
||||
self.model.load_dict(state_dict) |
||||
self.model.eval() |
||||
|
||||
# 标准化 |
||||
def norm(self, img): |
||||
img = np.array(img).transpose([2, 0, 1]).astype('float32') / 255.0 |
||||
return img.astype('float32') |
||||
|
||||
# 去标准化 |
||||
def denorm(self, img): |
||||
img = img.transpose((1, 2, 0)) |
||||
return (img * 255).clip(0, 255).astype('uint8') |
||||
|
||||
# 对图片输入进行预测,输入可以是图像路径,也可以是cv2读取的矩阵,或者PIL读取的图像文件 |
||||
def run_image(self, img): |
||||
if isinstance(img, str): |
||||
ori_img = Image.open(img).convert('RGB') |
||||
elif isinstance(img, np.ndarray): |
||||
ori_img = Image.fromarray(img).convert('RGB') |
||||
elif isinstance(img, Image.Image): |
||||
ori_img = img |
||||
|
||||
img = self.norm(ori_img) #图像标准化 |
||||
x = paddle.to_tensor(img[np.newaxis, ...]) #转成tensor |
||||
with paddle.no_grad(): |
||||
out = self.model(x) |
||||
|
||||
pred_img = self.denorm(out.numpy()[0]) #tensor转成numpy的array并去标准化 |
||||
pred_img = Image.fromarray(pred_img) # array转图像 |
||||
return pred_img |
||||
|
||||
#输入图像文件路径 |
||||
def run(self, input): |
||||
# 如果输出路径不存在则新建一个 |
||||
if not os.path.exists(self.output): |
||||
os.makedirs(self.output) |
||||
|
||||
pred_img = self.run_image(input) #对输入的图片进行预测 |
||||
out_path = None |
||||
if self.output: |
||||
try: |
||||
base_name = os.path.splitext(os.path.basename(input))[0] |
||||
except: |
||||
base_name = 'result' |
||||
out_path = os.path.join(self.output, base_name + '.png') #保存路径 |
||||
pred_img.save(out_path) #保存输出图片 |
||||
logger = get_logger() |
||||
logger.info('Image saved to {}'.format(out_path)) |
||||
|
||||
return pred_img, out_path |
@ -1,88 +0,0 @@ |
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
||||
# |
||||
#Licensed under the Apache License, Version 2.0 (the "License"); |
||||
#you may not use this file except in compliance with the License. |
||||
#You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
#Unless required by applicable law or agreed to in writing, software |
||||
#distributed under the License is distributed on an "AS IS" BASIS, |
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
#See the License for the specific language governing permissions and |
||||
#limitations under the License. |
||||
|
||||
import os |
||||
import numpy as np |
||||
from PIL import Image |
||||
|
||||
import paddle |
||||
from ppgan.models.generators import PAN |
||||
from ppgan.utils.download import get_path_from_url |
||||
from ppgan.utils.logger import get_logger |
||||
|
||||
from .base_predictor import BasePredictor |
||||
|
||||
REALSR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/pan_x4.pdparams' |
||||
|
||||
|
||||
class PANPredictor(BasePredictor): |
||||
def __init__(self, output='output', weight_path=None): |
||||
self.input = input |
||||
self.output = os.path.join(output, |
||||
'PAN') #定义超分的结果保存的路径,为output路径+模型名所在文件夹 |
||||
self.model = PAN(3, 3, 40, 24, 16) # 实例化模型 |
||||
if weight_path is None: |
||||
weight_path = get_path_from_url(REALSR_WEIGHT_URL) |
||||
state_dict = paddle.load(weight_path) #加载权重 |
||||
state_dict = state_dict['generator'] |
||||
self.model.load_dict(state_dict) |
||||
self.model.eval() |
||||
|
||||
# 标准化 |
||||
def norm(self, img): |
||||
img = np.array(img).transpose([2, 0, 1]).astype('float32') / 255.0 |
||||
return img.astype('float32') |
||||
|
||||
# 去标准化 |
||||
def denorm(self, img): |
||||
img = img.transpose((1, 2, 0)) |
||||
return (img * 255).clip(0, 255).astype('uint8') |
||||
|
||||
# 对图片输入进行预测,输入可以是图像路径,也可以是cv2读取的矩阵,或者PIL读取的图像文件 |
||||
def run_image(self, img): |
||||
if isinstance(img, str): |
||||
ori_img = Image.open(img).convert('RGB') |
||||
elif isinstance(img, np.ndarray): |
||||
ori_img = Image.fromarray(img).convert('RGB') |
||||
elif isinstance(img, Image.Image): |
||||
ori_img = img |
||||
|
||||
img = self.norm(ori_img) #图像标准化 |
||||
x = paddle.to_tensor(img[np.newaxis, ...]) #转成tensor |
||||
with paddle.no_grad(): |
||||
out = self.model(x) |
||||
|
||||
pred_img = self.denorm(out.numpy()[0]) #tensor转成numpy的array并去标准化 |
||||
pred_img = Image.fromarray(pred_img) # array转图像 |
||||
return pred_img |
||||
|
||||
#输入图像文件路径 |
||||
def run(self, input): |
||||
# 如果输出路径不存在则新建一个 |
||||
if not os.path.exists(self.output): |
||||
os.makedirs(self.output) |
||||
|
||||
pred_img = self.run_image(input) #对输入的图片进行预测 |
||||
out_path = None |
||||
if self.output: |
||||
try: |
||||
base_name = os.path.splitext(os.path.basename(input))[0] |
||||
except: |
||||
base_name = 'result' |
||||
out_path = os.path.join(self.output, base_name + '.png') #保存路径 |
||||
pred_img.save(out_path) #保存输出图片 |
||||
logger = get_logger() |
||||
logger.info('Image saved to {}'.format(out_path)) |
||||
|
||||
return pred_img, out_path |
Loading…
Reference in new issue