commit
9fd3b7b00e
17 changed files with 854 additions and 195 deletions
@ -0,0 +1,437 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import os |
||||
import os.path as osp |
||||
import math |
||||
from abc import ABCMeta, abstractmethod |
||||
from collections import Counter, defaultdict |
||||
|
||||
import numpy as np |
||||
from tqdm import tqdm |
||||
|
||||
import paddlers.utils.logging as logging |
||||
|
||||
|
||||
class Cache(metaclass=ABCMeta): |
||||
@abstractmethod |
||||
def get_block(self, i_st, j_st, h, w): |
||||
pass |
||||
|
||||
|
||||
class SlowCache(Cache): |
||||
def __init__(self): |
||||
super(SlowCache, self).__init__() |
||||
self.cache = defaultdict(Counter) |
||||
|
||||
def push_pixel(self, i, j, l): |
||||
self.cache[(i, j)][l] += 1 |
||||
|
||||
def push_block(self, i_st, j_st, h, w, data): |
||||
for i in range(0, h): |
||||
for j in range(0, w): |
||||
self.push_pixel(i_st + i, j_st + j, data[i, j]) |
||||
|
||||
def pop_pixel(self, i, j): |
||||
self.cache.pop((i, j)) |
||||
|
||||
def pop_block(self, i_st, j_st, h, w): |
||||
for i in range(0, h): |
||||
for j in range(0, w): |
||||
self.pop_pixel(i_st + i, j_st + j) |
||||
|
||||
def get_pixel(self, i, j): |
||||
winners = self.cache[(i, j)].most_common(1) |
||||
winner = winners[0] |
||||
return winner[0] |
||||
|
||||
def get_block(self, i_st, j_st, h, w): |
||||
block = [] |
||||
for i in range(i_st, i_st + h): |
||||
row = [] |
||||
for j in range(j_st, j_st + w): |
||||
row.append(self.get_pixel(i, j)) |
||||
block.append(row) |
||||
return np.asarray(block) |
||||
|
||||
|
||||
class ProbCache(Cache): |
||||
def __init__(self, h, w, ch, cw, sh, sw, dtype=np.float32, order='c'): |
||||
super(ProbCache, self).__init__() |
||||
self.cache = None |
||||
self.h = h |
||||
self.w = w |
||||
self.ch = ch |
||||
self.cw = cw |
||||
self.sh = sh |
||||
self.sw = sw |
||||
if not issubclass(dtype, np.floating): |
||||
raise TypeError("`dtype` must be one of the floating types.") |
||||
self.dtype = dtype |
||||
order = order.lower() |
||||
if order not in ('c', 'f'): |
||||
raise ValueError("`order` other than 'c' and 'f' is not supported.") |
||||
self.order = order |
||||
|
||||
def _alloc_memory(self, nc): |
||||
if self.order == 'c': |
||||
# Colomn-first order (C-style) |
||||
# |
||||
# <-- cw --> |
||||
# |--------|---------------------|^ ^ |
||||
# | || | sh |
||||
# |--------|---------------------|| ch v |
||||
# | || |
||||
# |--------|---------------------|v |
||||
# <------------ w ---------------> |
||||
self.cache = np.zeros((self.ch, self.w, nc), dtype=self.dtype) |
||||
elif self.order == 'f': |
||||
# Row-first order (Fortran-style) |
||||
# |
||||
# <-- sw --> |
||||
# <---- cw ----> |
||||
# |--------|---|^ ^ |
||||
# | | || | |
||||
# | | || ch |
||||
# | | || | |
||||
# |--------|---|| h v |
||||
# | | || |
||||
# | | || |
||||
# | | || |
||||
# |--------|---|v |
||||
self.cache = np.zeros((self.h, self.cw, nc), dtype=self.dtype) |
||||
|
||||
def update_block(self, i_st, j_st, h, w, prob_map): |
||||
if self.cache is None: |
||||
nc = prob_map.shape[2] |
||||
# Lazy allocation of memory |
||||
self._alloc_memory(nc) |
||||
self.cache[i_st:i_st + h, j_st:j_st + w] += prob_map |
||||
|
||||
def roll_cache(self, shift): |
||||
if self.order == 'c': |
||||
self.cache[:-shift] = self.cache[shift:] |
||||
self.cache[-shift:, :] = 0 |
||||
elif self.order == 'f': |
||||
self.cache[:, :-shift] = self.cache[:, shift:] |
||||
self.cache[:, -shift:] = 0 |
||||
|
||||
def get_block(self, i_st, j_st, h, w): |
||||
return np.argmax(self.cache[i_st:i_st + h, j_st:j_st + w], axis=2) |
||||
|
||||
|
||||
class OverlapProcessor(metaclass=ABCMeta): |
||||
def __init__(self, h, w, ch, cw, sh, sw): |
||||
super(OverlapProcessor, self).__init__() |
||||
self.h = h |
||||
self.w = w |
||||
self.ch = ch |
||||
self.cw = cw |
||||
self.sh = sh |
||||
self.sw = sw |
||||
|
||||
@abstractmethod |
||||
def process_pred(self, out, xoff, yoff): |
||||
pass |
||||
|
||||
|
||||
class KeepFirstProcessor(OverlapProcessor): |
||||
def __init__(self, h, w, ch, cw, sh, sw, ds, inval=255): |
||||
super(KeepFirstProcessor, self).__init__(h, w, ch, cw, sh, sw) |
||||
self.ds = ds |
||||
self.inval = inval |
||||
|
||||
def process_pred(self, out, xoff, yoff): |
||||
pred = out['label_map'] |
||||
pred = pred[:self.ch, :self.cw] |
||||
rd_block = self.ds.ReadAsArray(xoff, yoff, self.cw, self.ch) |
||||
mask = rd_block != self.inval |
||||
pred = np.where(mask, rd_block, pred) |
||||
return pred |
||||
|
||||
|
||||
class KeepLastProcessor(OverlapProcessor): |
||||
def process_pred(self, out, xoff, yoff): |
||||
pred = out['label_map'] |
||||
pred = pred[:self.ch, :self.cw] |
||||
return pred |
||||
|
||||
|
||||
class AccumProcessor(OverlapProcessor): |
||||
def __init__(self, |
||||
h, |
||||
w, |
||||
ch, |
||||
cw, |
||||
sh, |
||||
sw, |
||||
dtype=np.float16, |
||||
assign_weight=True): |
||||
super(AccumProcessor, self).__init__(h, w, ch, cw, sh, sw) |
||||
self.cache = ProbCache(h, w, ch, cw, sh, sw, dtype=dtype, order='c') |
||||
self.prev_yoff = None |
||||
self.assign_weight = assign_weight |
||||
|
||||
def process_pred(self, out, xoff, yoff): |
||||
if self.prev_yoff is not None and yoff != self.prev_yoff: |
||||
if yoff < self.prev_yoff: |
||||
raise RuntimeError |
||||
self.cache.roll_cache(yoff - self.prev_yoff) |
||||
pred = out['label_map'] |
||||
pred = pred[:self.ch, :self.cw] |
||||
prob = out['score_map'] |
||||
prob = prob[:self.ch, :self.cw] |
||||
if self.assign_weight: |
||||
prob = assign_border_weights(prob, border_ratio=0.25, inplace=True) |
||||
self.cache.update_block(0, xoff, self.ch, self.cw, prob) |
||||
pred = self.cache.get_block(0, xoff, self.ch, self.cw) |
||||
self.prev_yoff = yoff |
||||
return pred |
||||
|
||||
|
||||
def assign_border_weights(array, weight=0.5, border_ratio=0.25, inplace=True): |
||||
if not inplace: |
||||
array = array.copy() |
||||
h, w = array.shape[:2] |
||||
hm, wm = int(h * border_ratio), int(w * border_ratio) |
||||
array[:hm] *= weight |
||||
array[-hm:] *= weight |
||||
array[:, :wm] *= weight |
||||
array[:, -wm:] *= weight |
||||
return array |
||||
|
||||
|
||||
def read_block(ds, |
||||
xoff, |
||||
yoff, |
||||
xsize, |
||||
ysize, |
||||
tar_xsize=None, |
||||
tar_ysize=None, |
||||
pad_val=0): |
||||
if tar_xsize is None: |
||||
tar_xsize = xsize |
||||
if tar_ysize is None: |
||||
tar_ysize = ysize |
||||
# Read data from dataset |
||||
block = ds.ReadAsArray(xoff, yoff, xsize, ysize) |
||||
c, real_ysize, real_xsize = block.shape |
||||
assert real_ysize == ysize and real_xsize == xsize |
||||
# [c, h, w] -> [h, w, c] |
||||
block = block.transpose((1, 2, 0)) |
||||
if (real_ysize, real_xsize) != (tar_ysize, tar_xsize): |
||||
if real_ysize >= tar_ysize or real_xsize >= tar_xsize: |
||||
raise ValueError |
||||
padded_block = np.full( |
||||
(tar_ysize, tar_xsize, c), fill_value=pad_val, dtype=block.dtype) |
||||
# Fill |
||||
padded_block[:real_ysize, :real_xsize] = block |
||||
return padded_block |
||||
else: |
||||
return block |
||||
|
||||
|
||||
def slider_predict(predict_func, |
||||
img_file, |
||||
save_dir, |
||||
block_size, |
||||
overlap, |
||||
transforms, |
||||
invalid_value, |
||||
merge_strategy, |
||||
batch_size, |
||||
show_progress=False): |
||||
""" |
||||
Do inference using sliding windows. |
||||
|
||||
Args: |
||||
predict_func (callable): A callable object that makes the prediction. |
||||
img_file (str|tuple[str]): Image path(s). |
||||
save_dir (str): Directory that contains saved geotiff file. |
||||
block_size (list[int] | tuple[int] | int): |
||||
Size of block. If `block_size` is list or tuple, it should be in |
||||
(W, H) format. |
||||
overlap (list[int] | tuple[int] | int): |
||||
Overlap between two blocks. If `overlap` is list or tuple, it should |
||||
be in (W, H) format. |
||||
transforms (paddlers.transforms.Compose|None): Transforms for inputs. If |
||||
None, the transforms for evaluation process will be used. |
||||
invalid_value (int): Value that marks invalid pixels in output image. |
||||
Defaults to 255. |
||||
merge_strategy (str): Strategy to merge overlapping blocks. Choices are |
||||
{'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last' |
||||
means keeping the values of the first and the last block in |
||||
traversal order, respectively. 'accum' means determining the class |
||||
of an overlapping pixel according to accumulated probabilities. |
||||
batch_size (int): Batch size used in inference. |
||||
show_progress (bool, optional): Whether to show prediction progress with a |
||||
progress bar. Defaults to True. |
||||
""" |
||||
|
||||
try: |
||||
from osgeo import gdal |
||||
except: |
||||
import gdal |
||||
|
||||
if isinstance(block_size, int): |
||||
block_size = (block_size, block_size) |
||||
elif isinstance(block_size, (tuple, list)) and len(block_size) == 2: |
||||
block_size = tuple(block_size) |
||||
else: |
||||
raise ValueError( |
||||
"`block_size` must be a tuple/list of length 2 or an integer.") |
||||
if isinstance(overlap, int): |
||||
overlap = (overlap, overlap) |
||||
elif isinstance(overlap, (tuple, list)) and len(overlap) == 2: |
||||
overlap = tuple(overlap) |
||||
else: |
||||
raise ValueError( |
||||
"`overlap` must be a tuple/list of length 2 or an integer.") |
||||
|
||||
step = np.array( |
||||
block_size, dtype=np.int32) - np.array( |
||||
overlap, dtype=np.int32) |
||||
if step[0] == 0 or step[1] == 0: |
||||
raise ValueError("`block_size` and `overlap` should not be equal.") |
||||
|
||||
if isinstance(img_file, tuple): |
||||
if len(img_file) != 2: |
||||
raise ValueError("Tuple `img_file` must have the length of two.") |
||||
# Assume that two input images have the same size |
||||
src_data = gdal.Open(img_file[0]) |
||||
src2_data = gdal.Open(img_file[1]) |
||||
# Output name is the same as the name of the first image |
||||
file_name = osp.basename(osp.normpath(img_file[0])) |
||||
else: |
||||
src_data = gdal.Open(img_file) |
||||
file_name = osp.basename(osp.normpath(img_file)) |
||||
|
||||
# Get size of original raster |
||||
width = src_data.RasterXSize |
||||
height = src_data.RasterYSize |
||||
bands = src_data.RasterCount |
||||
|
||||
# XXX: GDAL read behavior conforms to paddlers.transforms.decode_image(read_raw=True) |
||||
# except for SAR images. |
||||
if bands == 1: |
||||
logging.warning( |
||||
f"Detected `bands=1`. Please note that currently `slider_predict()` does not properly handle SAR images." |
||||
) |
||||
|
||||
if block_size[0] > width or block_size[1] > height: |
||||
raise ValueError("`block_size` should not be larger than image size.") |
||||
|
||||
driver = gdal.GetDriverByName("GTiff") |
||||
if not osp.exists(save_dir): |
||||
os.makedirs(save_dir) |
||||
# Replace extension name with '.tif' |
||||
file_name = osp.splitext(file_name)[0] + ".tif" |
||||
save_file = osp.join(save_dir, file_name) |
||||
dst_data = driver.Create(save_file, width, height, 1, gdal.GDT_Byte) |
||||
|
||||
# Set meta-information |
||||
dst_data.SetGeoTransform(src_data.GetGeoTransform()) |
||||
dst_data.SetProjection(src_data.GetProjection()) |
||||
|
||||
# Initialize raster with `invalid_value` |
||||
band = dst_data.GetRasterBand(1) |
||||
band.WriteArray( |
||||
np.full( |
||||
(height, width), fill_value=invalid_value, dtype="uint8")) |
||||
|
||||
if overlap == (0, 0) or block_size == (width, height): |
||||
# When there is no overlap or the whole image is used as input, |
||||
# use 'keep_last' strategy as it introduces least overheads |
||||
merge_strategy = 'keep_last' |
||||
|
||||
if merge_strategy == 'keep_first': |
||||
overlap_processor = KeepFirstProcessor( |
||||
height, |
||||
width, |
||||
*block_size[::-1], |
||||
*step[::-1], |
||||
band, |
||||
inval=invalid_value) |
||||
elif merge_strategy == 'keep_last': |
||||
overlap_processor = KeepLastProcessor(height, width, *block_size[::-1], |
||||
*step[::-1]) |
||||
elif merge_strategy == 'accum': |
||||
overlap_processor = AccumProcessor(height, width, *block_size[::-1], |
||||
*step[::-1]) |
||||
else: |
||||
raise ValueError("{} is not a supported stragegy for block merging.". |
||||
format(merge_strategy)) |
||||
|
||||
xsize, ysize = block_size |
||||
num_blocks = math.ceil(height / step[1]) * math.ceil(width / step[0]) |
||||
cnt = 0 |
||||
if show_progress: |
||||
pb = tqdm(total=num_blocks) |
||||
batch_data = [] |
||||
batch_offsets = [] |
||||
for yoff in range(0, height, step[1]): |
||||
for xoff in range(0, width, step[0]): |
||||
if xoff + xsize > width: |
||||
xoff = width - xsize |
||||
is_end_of_row = True |
||||
else: |
||||
is_end_of_row = False |
||||
if yoff + ysize > height: |
||||
yoff = height - ysize |
||||
is_end_of_col = True |
||||
else: |
||||
is_end_of_col = False |
||||
|
||||
# Read |
||||
im = read_block(src_data, xoff, yoff, xsize, ysize) |
||||
|
||||
if isinstance(img_file, tuple): |
||||
im2 = read_block(src2_data, xoff, yoff, xsize, ysize) |
||||
batch_data.append((im, im2)) |
||||
else: |
||||
batch_data.append(im) |
||||
|
||||
batch_offsets.append((xoff, yoff)) |
||||
|
||||
len_batch = len(batch_data) |
||||
|
||||
if is_end_of_row and is_end_of_col and len_batch < batch_size: |
||||
# Pad `batch_data` by repeating the last element |
||||
batch_data = batch_data + [batch_data[-1]] * (batch_size - |
||||
len_batch) |
||||
# While keeping `len(batch_offsets)` the number of valid elements in the batch |
||||
|
||||
if len(batch_data) == batch_size: |
||||
# Predict |
||||
batch_out = predict_func(batch_data, transforms=transforms) |
||||
|
||||
for out, (xoff_, yoff_) in zip(batch_out, batch_offsets): |
||||
# Get processed result |
||||
pred = overlap_processor.process_pred(out, xoff_, yoff_) |
||||
# Write to file |
||||
band.WriteArray(pred, xoff_, yoff_) |
||||
|
||||
dst_data.FlushCache() |
||||
batch_data.clear() |
||||
batch_offsets.clear() |
||||
|
||||
cnt += 1 |
||||
|
||||
if show_progress: |
||||
pb.update(1) |
||||
pb.set_description("{} out of {} blocks processed.".format( |
||||
cnt, num_blocks)) |
||||
|
||||
dst_data = None |
||||
logging.info("GeoTiff file saved in {}.".format(save_file)) |
@ -0,0 +1,212 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import os.path as osp |
||||
import tempfile |
||||
|
||||
import paddlers as pdrs |
||||
import paddlers.transforms as T |
||||
from testing_utils import CommonTest |
||||
|
||||
|
||||
class _TestSliderPredictNamespace: |
||||
class TestSliderPredict(CommonTest): |
||||
def test_blocksize_and_overlap_whole(self): |
||||
# Original image size (256, 256) |
||||
with tempfile.TemporaryDirectory() as td: |
||||
# Whole-image inference using predict() |
||||
pred_whole = self.model.predict(self.image_path, |
||||
self.transforms) |
||||
pred_whole = pred_whole['label_map'] |
||||
|
||||
# Whole-image inference using slider_predict() |
||||
save_dir = osp.join(td, 'pred1') |
||||
self.model.slider_predict(self.image_path, save_dir, 256, 0, |
||||
self.transforms) |
||||
pred1 = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred1.shape, pred_whole.shape) |
||||
|
||||
# `block_size` == `overlap` |
||||
save_dir = osp.join(td, 'pred2') |
||||
with self.assertRaises(ValueError): |
||||
self.model.slider_predict(self.image_path, save_dir, 128, |
||||
128, self.transforms) |
||||
|
||||
# `block_size` is a tuple |
||||
save_dir = osp.join(td, 'pred3') |
||||
self.model.slider_predict(self.image_path, save_dir, (128, 32), |
||||
0, self.transforms) |
||||
pred3 = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred3.shape, pred_whole.shape) |
||||
|
||||
# `block_size` and `overlap` are both tuples |
||||
save_dir = osp.join(td, 'pred4') |
||||
self.model.slider_predict(self.image_path, save_dir, (128, 100), |
||||
(10, 5), self.transforms) |
||||
pred4 = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred4.shape, pred_whole.shape) |
||||
|
||||
# `block_size` larger than image size |
||||
save_dir = osp.join(td, 'pred5') |
||||
with self.assertRaises(ValueError): |
||||
self.model.slider_predict(self.image_path, save_dir, 512, 0, |
||||
self.transforms) |
||||
|
||||
def test_merge_strategy(self): |
||||
with tempfile.TemporaryDirectory() as td: |
||||
# Whole-image inference using predict() |
||||
pred_whole = self.model.predict(self.image_path, |
||||
self.transforms) |
||||
pred_whole = pred_whole['label_map'] |
||||
|
||||
# 'keep_first' |
||||
save_dir = osp.join(td, 'keep_first') |
||||
self.model.slider_predict( |
||||
self.image_path, |
||||
save_dir, |
||||
128, |
||||
64, |
||||
self.transforms, |
||||
merge_strategy='keep_first') |
||||
pred_keepfirst = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred_keepfirst.shape, pred_whole.shape) |
||||
|
||||
# 'keep_last' |
||||
save_dir = osp.join(td, 'keep_last') |
||||
self.model.slider_predict( |
||||
self.image_path, |
||||
save_dir, |
||||
128, |
||||
64, |
||||
self.transforms, |
||||
merge_strategy='keep_last') |
||||
pred_keeplast = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred_keeplast.shape, pred_whole.shape) |
||||
|
||||
# 'accum' |
||||
save_dir = osp.join(td, 'accum') |
||||
self.model.slider_predict( |
||||
self.image_path, |
||||
save_dir, |
||||
128, |
||||
64, |
||||
self.transforms, |
||||
merge_strategy='accum') |
||||
pred_accum = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred_accum.shape, pred_whole.shape) |
||||
|
||||
def test_geo_info(self): |
||||
with tempfile.TemporaryDirectory() as td: |
||||
_, geo_info_in = T.decode_image( |
||||
self.ref_path, read_geo_info=True) |
||||
self.model.slider_predict(self.image_path, td, 128, 0, |
||||
self.transforms) |
||||
_, geo_info_out = T.decode_image( |
||||
osp.join(td, self.basename), read_geo_info=True) |
||||
self.assertEqual(geo_info_out['geo_trans'], |
||||
geo_info_in['geo_trans']) |
||||
self.assertEqual(geo_info_out['geo_proj'], |
||||
geo_info_in['geo_proj']) |
||||
|
||||
def test_batch_size(self): |
||||
with tempfile.TemporaryDirectory() as td: |
||||
# batch_size = 1 |
||||
save_dir = osp.join(td, 'bs1') |
||||
self.model.slider_predict( |
||||
self.image_path, |
||||
save_dir, |
||||
128, |
||||
64, |
||||
self.transforms, |
||||
merge_strategy='keep_first', |
||||
batch_size=1) |
||||
pred_bs1 = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
|
||||
# batch_size = 4 |
||||
save_dir = osp.join(td, 'bs4') |
||||
self.model.slider_predict( |
||||
self.image_path, |
||||
save_dir, |
||||
128, |
||||
64, |
||||
self.transforms, |
||||
merge_strategy='keep_first', |
||||
batch_size=4) |
||||
pred_bs4 = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred_bs4, pred_bs1) |
||||
|
||||
# batch_size = 8 |
||||
save_dir = osp.join(td, 'bs4') |
||||
self.model.slider_predict( |
||||
self.image_path, |
||||
save_dir, |
||||
128, |
||||
64, |
||||
self.transforms, |
||||
merge_strategy='keep_first', |
||||
batch_size=8) |
||||
pred_bs8 = T.decode_image( |
||||
osp.join(save_dir, self.basename), |
||||
read_raw=True, |
||||
decode_sar=False) |
||||
self.check_output_equal(pred_bs8, pred_bs1) |
||||
|
||||
|
||||
class TestSegSliderPredict(_TestSliderPredictNamespace.TestSliderPredict): |
||||
def setUp(self): |
||||
self.model = pdrs.tasks.seg.UNet(in_channels=10) |
||||
self.transforms = T.Compose([ |
||||
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10), |
||||
T.ArrangeSegmenter('test') |
||||
]) |
||||
self.image_path = "data/ssst/multispectral.tif" |
||||
self.ref_path = self.image_path |
||||
self.basename = osp.basename(self.ref_path) |
||||
|
||||
|
||||
class TestCDSliderPredict(_TestSliderPredictNamespace.TestSliderPredict): |
||||
def setUp(self): |
||||
self.model = pdrs.tasks.cd.BIT(in_channels=10) |
||||
self.transforms = T.Compose([ |
||||
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10), |
||||
T.ArrangeChangeDetector('test') |
||||
]) |
||||
self.image_path = ("data/ssmt/multispectral_t1.tif", |
||||
"data/ssmt/multispectral_t2.tif") |
||||
self.ref_path = self.image_path[0] |
||||
self.basename = osp.basename(self.ref_path) |
Loading…
Reference in new issue