add 5 flip mode, 3 rotate mode of images (#35)

own
huilin 3 years ago committed by GitHub
parent 15514d6b47
commit 9deb2900b8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. BIN
      docs/data/assets/1650011471696-image.png
  2. BIN
      docs/data/assets/1650011491220-image.png
  3. BIN
      docs/data/assets/1650011634205-image.png
  4. BIN
      docs/data/assets/1650025881244-image.png
  5. BIN
      docs/data/assets/1650025909461-image.png
  6. BIN
      docs/data/assets/1650026052596-image.png
  7. BIN
      docs/data/assets/1650026072233-image.png
  8. BIN
      docs/data/assets/1650026247150-image.png
  9. BIN
      docs/data/assets/1650026289987-image.png
  10. BIN
      docs/data/assets/1650026457254-image.png
  11. BIN
      docs/data/assets/1650026487732-image.png
  12. BIN
      docs/data/assets/1650026546304-image.png
  13. BIN
      docs/data/assets/1650026559309-image.png
  14. BIN
      docs/data/assets/image.png
  15. 547
      docs/data/coco_tools_cn.md
  16. 188
      paddlers/transforms/functions.py
  17. 102
      paddlers/transforms/operators.py
  18. 0
      tools/coco_tools/__init__.py
  19. 190
      tools/coco_tools/json_AnnoSta.py
  20. 86
      tools/coco_tools/json_Img2Json.py
  21. 93
      tools/coco_tools/json_ImgSta.py
  22. 65
      tools/coco_tools/json_InfoShow.py
  23. 78
      tools/coco_tools/json_Merge.py
  24. 111
      tools/coco_tools/json_Split.py

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

@ -0,0 +1,547 @@
# coco_tools说明
## 0.工具说明
coco_tools是PaddleRS中,用coco类标注文件处理的工具集,详见[tools/coco_tools/](tools/coco_tools/)。
由于pycocotools库在部分环境下无法安装,因此可以使用coco_tools进行一些简单的文件处理工作。
## 1.文件说明
目前coco_tools共有6个文件,各文件及其功能如下:
* json_InfoShow: 打印json文件中各个字典的基本信息;
* json_ImgSta: 统计json文件中的图像信息,生成统计表、统计图;
* json_AnnoSta: 统计json文件中的标注信息,生成统计表、统计图;
* json_Img2Json: 统计test集图像,生成json文件;
* json_Split: json文件拆分,划分为train set、val set
* json_Merge: json文件合并,将多个json合并为1个json
## 2. 应用案例说明
通过本教程,你将快速学会PaddleRS中关于coco_tools的API调用,帮助你完成coco类数据集的信息统计、文件操作。
## 2.1 示例数据集
本文档以COCO 2017数据集作为示例数据,进行演示。COCO 2017 [官方下载链接](https://cocodataset.org/#download)、[aistudio备份链接](https://aistudio.baidu.com/aistudio/datasetdetail/7122)
COCO 2017 文件结构
```
./COCO2017/ # 数据集根目录
|--train2017 # 训练集原图目录
| |--...
| |--...
|--val2017 # 验证集原图目录
| |--...
| |--...
|--test2017 # 测试集原图目录
| |--...
| |--...
|
|--annotations # 标注文件目录
| |--...
| |--...
|
|--coco_tools # coco_tools代码目录
| |--...
| |--...
```
## 2.2 打印json信息
使用json_InfoShow.py,可以打印`instances_val2017.json`中的各个key, 并输出value中的前n个元素,从而帮助快速了解标注信息。
尤其是对于coco格式标注数据中的image、annotation,可以查看其具体的标注格式
### 2.2.1 命令演示
可以执行如下命令,打印`instances_val2017.json`信息
```
python ./coco_tools/json_InfoShow.py \
--json_path=./annotations/instances_val2017.json \
--show_num 5
```
### 2.2.2 参数说明
| 参数名 | 含义 | 默认值 |
| ------------- | ------------------------------ | -------- |
| --json_path | 需要统计的json文件路径 | |
| --show_num | (可选)输出value元素的个数 | 5 |
| --Args_show | (可选)是否打印输入的参数信息 | True |
### 2.2.3 结果展示
执行上述命令后,输出结果如下:
```
------------------------------------------------Args------------------------------------------------
json_path = ./annotations/instances_val2017.json
show_num = 5
Args_show = True
------------------------------------------------Info------------------------------------------------
json read...
json keys: dict_keys(['info', 'licenses', 'images', 'annotations', 'categories'])
***********************info***********************
Content Type: dict
Total Length: 6
First 5 record:
description : COCO 2017 Dataset
url : http://cocodataset.org
version : 1.0
year : 2017
contributor : COCO Consortium
...
...
*********************licenses*********************
Content Type: list
Total Length: 8
First 5 record:
{'url': 'http://creativecommons.org/licenses/by-nc-sa/2.0/', 'id': 1, 'name': 'Attribution-NonCommercial-ShareAlike License'}
{'url': 'http://creativecommons.org/licenses/by-nc/2.0/', 'id': 2, 'name': 'Attribution-NonCommercial License'}
{'url': 'http://creativecommons.org/licenses/by-nc-nd/2.0/', 'id': 3, 'name': 'Attribution-NonCommercial-NoDerivs License'}
{'url': 'http://creativecommons.org/licenses/by/2.0/', 'id': 4, 'name': 'Attribution License'}
{'url': 'http://creativecommons.org/licenses/by-sa/2.0/', 'id': 5, 'name': 'Attribution-ShareAlike License'}
...
...
**********************images**********************
Content Type: list
Total Length: 5000
First 5 record:
{'license': 4, 'file_name': '000000397133.jpg', 'coco_url': 'http://images.cocodataset.org/val2017/000000397133.jpg', 'height': 427, 'width': 640, 'date_captured': '2013-11-14 17:02:52', 'flickr_url': 'http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg', 'id': 397133}
{'license': 1, 'file_name': '000000037777.jpg', 'coco_url': 'http://images.cocodataset.org/val2017/000000037777.jpg', 'height': 230, 'width': 352, 'date_captured': '2013-11-14 20:55:31', 'flickr_url': 'http://farm9.staticflickr.com/8429/7839199426_f6d48aa585_z.jpg', 'id': 37777}
{'license': 4, 'file_name': '000000252219.jpg', 'coco_url': 'http://images.cocodataset.org/val2017/000000252219.jpg', 'height': 428, 'width': 640, 'date_captured': '2013-11-14 22:32:02', 'flickr_url': 'http://farm4.staticflickr.com/3446/3232237447_13d84bd0a1_z.jpg', 'id': 252219}
{'license': 1, 'file_name': '000000087038.jpg', 'coco_url': 'http://images.cocodataset.org/val2017/000000087038.jpg', 'height': 480, 'width': 640, 'date_captured': '2013-11-14 23:11:37', 'flickr_url': 'http://farm8.staticflickr.com/7355/8825114508_b0fa4d7168_z.jpg', 'id': 87038}
{'license': 6, 'file_name': '000000174482.jpg', 'coco_url': 'http://images.cocodataset.org/val2017/000000174482.jpg', 'height': 388, 'width': 640, 'date_captured': '2013-11-14 23:16:55', 'flickr_url': 'http://farm8.staticflickr.com/7020/6478877255_242f741dd1_z.jpg', 'id': 174482}
...
...
*******************annotations********************
Content Type: list
Total Length: 36781
First 5 record:
{'segmentation': [[510.66, 423.01, 511.72, 420.03, 510.45, 416.0, 510.34, 413.02, 510.77, 410.26, 510.77, 407.5, 510.34, 405.16, 511.51, 402.83, 511.41, 400.49, 510.24, 398.16, 509.39, 397.31, 504.61, 399.22, 502.17, 399.64, 500.89, 401.66, 500.47, 402.08, 499.09, 401.87, 495.79, 401.98, 490.59, 401.77, 488.79, 401.77, 485.39, 398.58, 483.9, 397.31, 481.56, 396.35, 478.48, 395.93, 476.68, 396.03, 475.4, 396.77, 473.92, 398.79, 473.28, 399.96, 473.49, 401.87, 474.56, 403.47, 473.07, 405.59, 473.39, 407.71, 476.68, 409.41, 479.23, 409.73, 481.56, 410.69, 480.4, 411.85, 481.35, 414.93, 479.86, 418.65, 477.32, 420.03, 476.04, 422.58, 479.02, 422.58, 480.29, 423.01, 483.79, 419.93, 486.66, 416.21, 490.06, 415.57, 492.18, 416.85, 491.65, 420.24, 492.82, 422.9, 493.56, 424.39, 496.43, 424.6, 498.02, 423.01, 498.13, 421.31, 497.07, 420.03, 497.07, 415.15, 496.33, 414.51, 501.1, 411.96, 502.06, 411.32, 503.02, 415.04, 503.33, 418.12, 501.1, 420.24, 498.98, 421.63, 500.47, 424.39, 505.03, 423.32, 506.2, 421.31, 507.69, 419.5, 506.31, 423.32, 510.03, 423.01, 510.45, 423.01]], 'area': 702.1057499999998, 'iscrowd': 0, 'image_id': 289343, 'bbox': [473.07, 395.93, 38.65, 28.67], 'category_id': 18, 'id': 1768}
{'segmentation': [[289.74, 443.39, 302.29, 445.32, 308.09, 427.94, 310.02, 416.35, 304.23, 405.73, 300.14, 385.01, 298.23, 359.52, 295.04, 365.89, 282.3, 362.71, 275.29, 358.25, 277.2, 346.14, 280.39, 339.13, 284.85, 339.13, 291.22, 338.49, 293.77, 335.95, 295.04, 326.39, 297.59, 317.47, 289.94, 309.82, 287.4, 288.79, 286.12, 275.41, 284.21, 271.59, 279.11, 276.69, 275.93, 275.41, 272.1, 271.59, 274.01, 267.77, 275.93, 265.22, 277.84, 264.58, 282.3, 251.2, 293.77, 238.46, 307.79, 221.25, 314.79, 211.69, 325.63, 205.96, 338.37, 205.32, 347.29, 205.32, 353.03, 205.32, 361.31, 200.23, 367.95, 202.02, 372.27, 205.8, 382.52, 215.51, 388.46, 225.22, 399.25, 235.47, 399.25, 252.74, 390.08, 247.34, 386.84, 247.34, 388.46, 256.52, 397.09, 268.93, 413.28, 298.6, 421.91, 356.87, 424.07, 391.4, 422.99, 409.74, 420.29, 428.63, 415.43, 433.48, 407.88, 414.6, 405.72, 391.94, 401.41, 404.89, 394.39, 420.54, 391.69, 435.64, 391.15, 447.51, 387.38, 461.0, 384.68, 480.0, 354.47, 477.73, 363.1, 433.48, 370.65, 405.43, 369.03, 394.64, 361.48, 398.95, 355.54, 403.81, 351.77, 403.81, 343.68, 403.27, 339.36, 402.19, 335.58, 404.89, 333.42, 411.9, 332.34, 416.76, 333.42, 425.93, 334.5, 430.79, 336.12, 435.64, 321.01, 464.78, 316.16, 468.01, 307.53, 472.33, 297.28, 472.33, 290.26, 471.25, 285.94, 472.33, 283.79, 464.78, 280.01, 462.62, 284.33, 454.53, 285.94, 453.45, 282.71, 448.59, 288.64, 444.27, 291.88, 443.74]], 'area': 27718.476299999995, 'iscrowd': 0, 'image_id': 61471, 'bbox': [272.1, 200.23, 151.97, 279.77], 'category_id': 18, 'id': 1773}
{'segmentation': [[147.76, 396.11, 158.48, 355.91, 153.12, 347.87, 137.04, 346.26, 125.25, 339.29, 124.71, 301.77, 139.18, 262.64, 159.55, 232.63, 185.82, 209.04, 226.01, 196.72, 244.77, 196.18, 251.74, 202.08, 275.33, 224.59, 283.9, 232.63, 295.16, 240.67, 315.53, 247.1, 327.85, 249.78, 338.57, 253.0, 354.12, 263.72, 379.31, 276.04, 395.39, 286.23, 424.33, 304.99, 454.95, 336.93, 479.62, 387.02, 491.58, 436.36, 494.57, 453.55, 497.56, 463.27, 493.08, 511.86, 487.02, 532.62, 470.4, 552.99, 401.26, 552.99, 399.65, 547.63, 407.15, 535.3, 389.46, 536.91, 374.46, 540.13, 356.23, 540.13, 354.09, 536.91, 341.23, 533.16, 340.15, 526.19, 342.83, 518.69, 355.7, 512.26, 360.52, 510.65, 374.46, 510.11, 375.53, 494.03, 369.1, 497.25, 361.06, 491.89, 361.59, 488.67, 354.63, 489.21, 346.05, 496.71, 343.37, 492.42, 335.33, 495.64, 333.19, 489.21, 327.83, 488.67, 323.0, 499.39, 312.82, 520.83, 304.24, 531.02, 291.91, 535.84, 273.69, 536.91, 269.4, 533.7, 261.36, 533.7, 256.0, 531.02, 254.93, 524.58, 268.33, 509.58, 277.98, 505.82, 287.09, 505.29, 301.56, 481.7, 302.1, 462.41, 294.06, 481.17, 289.77, 488.14, 277.98, 489.74, 261.36, 489.21, 254.93, 488.67, 254.93, 484.38, 244.75, 482.24, 247.96, 473.66, 260.83, 467.23, 276.37, 464.02, 283.34, 446.33, 285.48, 431.32, 287.63, 412.02, 277.98, 407.74, 260.29, 403.99, 257.61, 401.31, 255.47, 391.12, 233.8, 389.37, 220.18, 393.91, 210.65, 393.91, 199.76, 406.61, 187.51, 417.96, 178.43, 420.68, 167.99, 420.68, 163.45, 418.41, 158.01, 419.32, 148.47, 418.41, 145.3, 413.88, 146.66, 402.53]], 'area': 78969.31690000003, 'iscrowd': 0, 'image_id': 472375, 'bbox': [124.71, 196.18, 372.85, 356.81], 'category_id': 18, 'id': 2551}
{'segmentation': [[260.4, 231.26, 215.06, 274.01, 194.33, 307.69, 195.63, 329.72, 168.42, 355.63, 120.49, 382.83, 112.71, 415.22, 159.35, 457.98, 172.31, 483.89, 229.31, 504.62, 275.95, 500.73, 288.91, 495.55, 344.62, 605.67, 395.14, 634.17, 480.0, 632.87, 480.0, 284.37, 404.21, 223.48, 336.84, 202.75, 269.47, 154.82, 218.95, 179.43, 203.4, 194.98, 190.45, 211.82, 233.2, 205.34]], 'area': 108316.66515000002, 'iscrowd': 0, 'image_id': 520301, 'bbox': [112.71, 154.82, 367.29, 479.35], 'category_id': 18, 'id': 3186}
{'segmentation': [[200.61, 253.97, 273.19, 318.49, 302.43, 336.64, 357.87, 340.67, 402.23, 316.48, 470.78, 331.6, 521.19, 321.52, 583.69, 323.53, 598.81, 287.24, 600.83, 236.84, 584.7, 190.46, 580.66, 169.29, 531.27, 121.91, 472.8, 93.69, 420.38, 89.65, 340.74, 108.81, 295.37, 119.9, 263.11, 141.07, 233.88, 183.41, 213.72, 229.78, 200.61, 248.93]], 'area': 75864.53530000002, 'iscrowd': 0, 'image_id': 579321, 'bbox': [200.61, 89.65, 400.22, 251.02], 'category_id': 18, 'id': 3419}
...
...
********************categories********************
Content Type: list
Total Length: 80
First 5 record:
{'supercategory': 'person', 'id': 1, 'name': 'person'}
{'supercategory': 'vehicle', 'id': 2, 'name': 'bicycle'}
{'supercategory': 'vehicle', 'id': 3, 'name': 'car'}
{'supercategory': 'vehicle', 'id': 4, 'name': 'motorcycle'}
{'supercategory': 'vehicle', 'id': 5, 'name': 'airplane'}
...
...
```
### 2.2.4 结果说明
`instances_val2017.json`的key有5个,分别为
```
'info', 'licenses', 'images', 'annotations', 'categories'
```
info键,对应的值为字典,共有6个键值对,输出展示了前5对
licenses键,对应的值为列表,共有8个元素,输出展示了前5个
images键,对应的值为列表,共有5000个元素,输出展示了前5个
annotations键,对应的值为列表,共有36781个元素,输出展示了前5个
categories键,对应的值为列表,共有80个元素,输出展示了前5个
## 2.3 统计图像信息
使用json_ImgSta.py,可以从`instances_val2017.json`中,快速提取图像信息,生成csv表格,并生成统计图
### 2.3.1 命令演示
可以执行如下命令,打印`instances_val2017.json`信息
```
python ./coco_tools/json_ImgSta.py \
--json_path=./annotations/instances_val2017.json \
--csv_path=./img_sta/images.csv \
--png_shape_path=./img_sta/images_shape.png \
--png_shapeRate_path=./img_sta/images_shapeRate.png
```
### 2.3.2 参数说明
| 参数名 | 含义 | 默认值 |
| ---------------------- | --------------------------------------------------------------------- | -------- |
| --json_path | 需要统计的json文件路径 | |
| --csv_path | (可选)统计表格保存路径 | None |
| --png_shape_path | (可选)png图片保存路径,图片内容为所有图像shape的二维分布 | 5 |
| --png_shapeRate_path | (可选)png图片保存路径,图片内容为所有图像shape比例(宽/高)的一维分布 | 5 |
| --image_keyname | (可选)json文件中,图像key的名称 | images |
| --Args_show | (可选)是否打印输入的参数信息 | True |
### 2.3.3 结果展示
执行上述命令后,输出结果如下:
```
------------------------------------------------Args------------------------------------------------
json_path = ./annotations/instances_val2017.json
csv_path = ./img_sta/images.csv
png_shape_path = ./img_sta/images_shape.png
png_shapeRate_path = ./img_sta/images_shapeRate.png
image_keyname = images
Args_show = True
json read...
make dir: ./img_sta
png save to ./img_sta/images_shape.png
png save to ./img_sta/images_shapeRate.png
csv save to ./img_sta/images.csv
```
部分表格内容:
| | license | file_name | coco_url | height | width | date_captured | flickr_url | id | shape_rate |
| --- | --------- | ------------------ | -------------------------------------------------------- | -------- | ------- | --------------------- | ---------------------------------------------------------------- | -------- | ------------ |
| 0 | 4 | 000000397133.jpg | http://images.cocodataset.org/val2017/000000397133.jpg | 427 | 640 | 2013-11-14 17:02:52 | http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg | 397133 | 1.5 |
| 1 | 1 | 000000037777.jpg | http://images.cocodataset.org/val2017/000000037777.jpg | 230 | 352 | 2013-11-14 20:55:31 | http://farm9.staticflickr.com/8429/7839199426_f6d48aa585_z.jpg | 37777 | 1.5 |
| 2 | 4 | 000000252219.jpg | http://images.cocodataset.org/val2017/000000252219.jpg | 428 | 640 | 2013-11-14 22:32:02 | http://farm4.staticflickr.com/3446/3232237447_13d84bd0a1_z.jpg | 252219 | 1.5 |
| 3 | 1 | 000000087038.jpg | http://images.cocodataset.org/val2017/000000087038.jpg | 480 | 640 | 2013-11-14 23:11:37 | http://farm8.staticflickr.com/7355/8825114508_b0fa4d7168_z.jpg | 87038 | 1.3 |
保存的图片内容:
所有图像shape的二维分布
![image.png](./assets/1650011491220-image.png)
所有图像shape比例(宽/高)的一维分布
![image.png](./assets/1650011634205-image.png)
## 2.4 统计目标检测标注框信息
使用json_AnnoSta.py,可以从`instances_val2017.json`中,快速提取图像信息,生成csv表格,并生成统计图
### 2.4.1 命令演示
可以执行如下命令,打印`instances_val2017.json`信息
```
python ./coco_tools/json_AnnoSta.py \
--json_path=./annotations/instances_val2017.json \
--csv_path=./anno_sta/annos.csv \
--png_shape_path=./anno_sta/annos_shape.png \
--png_shapeRate_path=./anno_sta/annos_shapeRate.png \
--png_pos_path=./anno_sta/annos_pos.png \
--png_posEnd_path=./anno_sta/annos_posEnd.png \
--png_cat_path=./anno_sta/annos_cat.png \
--png_objNum_path=./anno_sta/annos_objNum.png \
--get_relative=True
```
### 2.4.2 参数说明
| 参数名 | 含义 | 默认值 |
| ---------------------- | ------------------------------------------------------------------------------------------------------------------------- | ------------- |
| --json_path | (可选)需要统计的json文件路径 | |
| --csv_path | (可选)统计表格保存路径 | None |
| --png_shape_path | (可选)png图片保存路径,图片内容为所有目标检测框shape的二维分布 | None |
| --png_shapeRate_path | (可选)png图片保存路径,图片内容为所有目标检测框shape比例(宽/高)的一维分布 | None |
| --png_pos_path | (可选)png图片保存路径,图片内容为所有目标检测框左上角坐标的二维分布 | None |
| --png_posEnd_path | (可选)png图片保存路径,图片内容为所有目标检测框右下角坐标的二维分布 | None |
| --png_cat_path | (可选)png图片保存路径,图片内容为各个类别的对象数量分布 | None |
| --png_objNum_path | (可选)png图片保存路径,图片内容为单个图像中含有标注对象的数量分布 | None |
| --get_relative | (可选)是否生成图像目标检测框shape、目标检测框左上角坐标、右下角坐标的相对比例值<br />(横轴坐标/图片长,纵轴坐标/图片宽) | None |
| --image_keyname | (可选)json文件中,图像key的名称 | images |
| --anno_keyname | (可选)json文件中,图像anno的名称 | annotations |
| --Args_show | (可选)是否打印输入的参数信息 | True |
### 2.4.3 结果展示
执行上述命令后,输出结果如下:
```
------------------------------------------------Args------------------------------------------------
json_path = ./annotations/instances_val2017.json
csv_path = ./anno_sta/annos.csv
png_shape_path = ./anno_sta/annos_shape.png
png_shapeRate_path = ./anno_sta/annos_shapeRate.png
png_pos_path = ./anno_sta/annos_pos.png
png_posEnd_path = ./anno_sta/annos_posEnd.png
png_cat_path = ./anno_sta/annos_cat.png
png_objNum_path = ./anno_sta/annos_objNum.png
get_relative = True
image_keyname = images
anno_keyname = annotations
Args_show = True
json read...
make dir: ./anno_sta
png save to ./anno_sta/annos_shape.png
png save to ./anno_sta/annos_shape_Relative.png
png save to ./anno_sta/annos_shapeRate.png
png save to ./anno_sta/annos_pos.png
png save to ./anno_sta/annos_pos_Relative.png
png save to ./anno_sta/annos_posEnd.png
png save to ./anno_sta/annos_posEnd_Relative.png
png save to ./anno_sta/annos_cat.png
png save to ./anno_sta/annos_objNum.png
csv save to ./anno_sta/annos.csv
```
部分表格内容:
![image.png](./assets/1650025881244-image.png)
所有目标检测框shape的二维分布:
![image.png](./assets/1650025909461-image.png)
所有目标检测框shape在图像中相对比例的二维分布:
![image.png](./assets/1650026052596-image.png)
所有目标检测框shape比例(宽/高)的一维分布:
![image.png](./assets/1650026072233-image.png)
所有目标检测框左上角坐标的二维分布:
![image.png](./assets/1650026247150-image.png)
所有目标检测框左上角坐标的相对比例值的二维分布:
![image.png](./assets/1650026289987-image.png)
所有目标检测框右下角坐标的二维分布:
![image.png](./assets/1650026457254-image.png)
所有目标检测框右下角坐标的相对比例值的二维分布:
![image.png](./assets/1650026487732-image.png)
各个类别的对象数量分布
![image.png](./assets/1650026546304-image.png)
单个图像中含有标注对象的数量分布
![image.png](./assets/1650026559309-image.png)
## 2.5 统计图像信息生成json
使用json_Test2Json.py,可以根据`test2017`中的文件信息与训练集json文件,快速提取图像信息,生成json文件
### 2.5.1 命令演示
可以执行如下命令,统计并生成`test2017`信息
```
python ./coco_tools/json_Img2Json.py \
--test_image_path=./test2017 \
--json_train_path=./annotations/instances_val2017.json \
--json_test_path=./test.json
```
### 2.5.2 参数说明
| 参数名 | 含义 | 默认值 |
| ------------------- | ---------------------------------------- | ------------ |
| --test_image_path | 需要统计的图像文件夹路径 | |
| --json_train_path | 用于参考的训练集json文件路径 | |
| --json_test_path | 生成的测试集json文件路径 | |
| --image_keyname | (可选)json文件中,图像key的名称 | images |
| --cat_keyname | (可选)json文件中,图像categories的名称 | categories |
| --Args_show | (可选)是否打印输入的参数信息 | True |
### 2.5.3 结果展示
执行上述命令后,输出结果如下:
```
------------------------------------------------Args------------------------------------------------
test_image_path = ./test2017
json_train_path = ./annotations/instances_val2017.json
json_test_path = ./test.json
Args_show = True
----------------------------------------------Get Test----------------------------------------------
json read...
test image read...
100%|█████████████████████████████████████| 40670/40670 [06:48<00:00, 99.62it/s]
total test image: 40670
```
生成的json文件信息:
```
------------------------------------------------Args------------------------------------------------
json_path = ./test.json
show_num = 5
Args_show = True
------------------------------------------------Info------------------------------------------------
json read...
json keys: dict_keys(['images', 'categories'])
**********************images**********************
Content Type: list
Total Length: 40670
First 5 record:
{'id': 0, 'width': 640, 'height': 427, 'file_name': '000000379269.jpg'}
{'id': 1, 'width': 640, 'height': 360, 'file_name': '000000086462.jpg'}
{'id': 2, 'width': 640, 'height': 427, 'file_name': '000000176710.jpg'}
{'id': 3, 'width': 640, 'height': 426, 'file_name': '000000071106.jpg'}
{'id': 4, 'width': 596, 'height': 640, 'file_name': '000000251918.jpg'}
...
...
********************categories********************
Content Type: list
Total Length: 80
First 5 record:
{'supercategory': 'person', 'id': 1, 'name': 'person'}
{'supercategory': 'vehicle', 'id': 2, 'name': 'bicycle'}
{'supercategory': 'vehicle', 'id': 3, 'name': 'car'}
{'supercategory': 'vehicle', 'id': 4, 'name': 'motorcycle'}
{'supercategory': 'vehicle', 'id': 5, 'name': 'airplane'}
...
...
```
## 2.6 json文件拆分
使用json_Split.py,可以拆分`instances_val2017.json`文件
### 2.6.1 命令演示
可以执行如下命令,拆分`instances_val2017.json`文件
```
python ./coco_tools/json_Split.py \
--json_all_path=./annotations/instances_val2017.json \
--json_train_path=./instances_val2017_train.json \
--json_val_path=./instances_val2017_val.json
```
### 2.6.2 参数说明
| 参数名 | 含义 | 默认值 |
| -------------------- | ------------------------------------------------------------------------------------- | ------------ |
| --json_all_path | 需要拆分的json文件路径 | |
| --json_train_path | 生成的train部分json文件 | |
| --json_val_path | 生成的val部分json文件 | |
| --val_split_rate | (可选)拆分过程中,val集文件的比例 | 0.1 |
| --val_split_num | (可选)拆分过程中,val集文件的数量,<br />如果设置了该参数,则val_split_rate参数失效 | None |
| --keep_val_inTrain | (可选)拆分过程中,是否在train中仍然保留val部分 | False |
| --image_keyname | (可选)json文件中,图像key的名称 | images |
| --cat_keyname | (可选)json文件中,图像categories的名称 | categories |
| --Args_show | (可选)是否打印输入的参数信息 | True |
### 2.6.3 结果展示
执行上述命令后,输出结果如下:
```
------------------------------------------------Args------------------------------------------------
json_all_path = ./annotations/instances_val2017.json
json_train_path = ./instances_val2017_train.json
json_val_path = ./instances_val2017_val.json
val_split_rate = 0.1
val_split_num = None
keep_val_inTrain = False
image_keyname = images
anno_keyname = annotations
Args_show = True
-----------------------------------------------Split------------------------------------------------
json read...
image total 5000, train 4500, val 500
anno total 36781, train 33119, val 3662
```
## 2.7 json文件合并
使用json_Merge.py,可以合并`instances_train2017.json、instances_val2017.json`文件
### 2.7.1 命令演示
可以执行如下命令,合并`instances_train2017.json、instances_val2017.json`文件
```
python ./coco_tools/json_Merge.py \
--json1_path=./annotations/instances_train2017.json \
--json2_path=./annotations/instances_val2017.json \
--save_path=./instances_trainval2017.json
```
### 2.7.2 参数说明
| 参数名 | 含义 | 默认值 |
| -------------- | ------------------------------- | --------------------------- |
| --json1_path | 需要合并的json文件1路径 | |
| --json2_path | 需要合并的json文件2路径 | |
| --save_path | 生成的json文件 | |
| --merge_keys | (可选)合并过程中需要合并的key | ['images', 'annotations'] |
| --Args_show | (可选)是否打印输入的参数信息 | True |
### 2.7.3 结果展示
执行上述命令后,输出结果如下:
```
------------------------------------------------Args------------------------------------------------
json1_path = ./annotations/instances_train2017.json
json2_path = ./annotations/instances_val2017.json
save_path = ./instances_trainval2017.json
merge_keys = ['images', 'annotations']
Args_show = True
-----------------------------------------------Merge------------------------------------------------
json read...
json merge...
info
licenses
images merge!
annotations merge!
categories
json save...
finish!
```

@ -55,15 +55,201 @@ def center_crop(im, crop_size=224):
return im
# region flip
def img_flip(im, method=0):
"""
flip image in different ways, this function provides 5 method to filp
this function can be applied to 2D or 3D images
Args:
im(array): image array
method(int or string): choose the flip method, it must be one of [
0, 1, 2, 3, 4, 'h', 'v', 'hv', 'rt2lb', 'lt2rb', 'dia', 'adia']
0 or 'h': flipped in horizontal direction, which is the most frequently used method
1 or 'v': flipped in vertical direction
2 or 'hv': flipped in both horizontal diction and vertical direction
3 or 'rt2lb' or 'dia': flipped around the diagonal,
which also can be thought as changing the RightTop part with LeftBottom part,
so it is called 'rt2lb' as well.
4 or 'lt2rb' or 'adia': flipped around the anti-diagonal
which also can be thought as changing the LeftTop part with RightBottom part,
so it is called 'lt2rb' as well.
Returns:
flipped image(array)
Raises:
ValueError: Shape of image should 2d, 3d or more.
Examples:
--assume an image is like this:
img:
/ + +
- / *
- * /
--we can flip it in following code:
img_h = im_flip(img, 'h')
img_v = im_flip(img, 'v')
img_vh = im_flip(img, 2)
img_rt2lb = im_flip(img, 3)
img_lt2rb = im_flip(img, 4)
--we can get flipped image:
img_h, flipped in horizontal direction
+ + \
* \ -
\ * -
img_v, flipped in vertical direction
- * \
- \ *
\ + +
img_vh, flipped in both horizontal diction and vertical direction
/ * -
* / -
+ + /
img_rt2lb, flipped around the diagonal
/ | |
+ / *
+ * /
img_lt2rb, flipped around the anti-diagonal
/ * +
* / +
| | /
"""
if not len(im.shape) >= 2:
raise ValueError("Shape of image should 2d, 3d or more")
if method==0 or method=='h':
return horizontal_flip(im)
elif method==1 or method=='v':
return vertical_flip(im)
elif method==2 or method=='hv':
return hv_flip(im)
elif method==3 or method=='rt2lb' or method=='dia':
return rt2lb_flip(im)
elif method==4 or method=='lt2rb' or method=='adia':
return lt2rb_flip(im)
else:
return im
def horizontal_flip(im):
im = im[:, ::-1, ...]
return im
def vertical_flip(im):
im = im[::-1, :, ...]
return im
def hv_flip(im):
im = im[::-1, ::-1, ...]
return im
def rt2lb_flip(im):
axs_list = list(range(len(im.shape)))
axs_list[:2] = [1, 0]
im = im.transpose(axs_list)
return im
def lt2rb_flip(im):
axs_list = list(range(len(im.shape)))
axs_list[:2] = [1, 0]
im = im[::-1, ::-1, ...].transpose(axs_list)
return im
# endregion
# region rotation
def img_simple_rotate(im, method=0):
"""
rotate image in simple ways, this function provides 3 method to rotate
this function can be applied to 2D or 3D images
Args:
im(array): image array
method(int or string): choose the flip method, it must be one of [
0, 1, 2, 90, 180, 270
]
0 or 90 : rotated in 90 degree, clockwise
1 or 180: rotated in 180 degree, clockwise
2 or 270: rotated in 270 degree, clockwise
Returns:
flipped image(array)
Raises:
ValueError: Shape of image should 2d, 3d or more.
Examples:
--assume an image is like this:
img:
/ + +
- / *
- * /
--we can rotate it in following code:
img_r90 = img_simple_rotate(img, 90)
img_r180 = img_simple_rotate(img, 1)
img_r270 = img_simple_rotate(img, 2)
--we can get rotated image:
img_r90, rotated in 90 degree
| | \
* \ +
\ * +
img_r180, rotated in 180 degree
/ * -
* / -
+ + /
img_r270, rotated in 270 degree
+ * \
+ \ *
\ | |
"""
if not len(im.shape) >= 2:
raise ValueError("Shape of image should 2d, 3d or more")
if method==0 or method==90:
return rot_90(im)
elif method==1 or method==180:
return rot_180(im)
elif method==2 or method==270:
return rot_270(im)
else:
return im
def rot_90(im):
axs_list = list(range(len(im.shape)))
axs_list[:2] = [1, 0]
im = im[::-1, :, ...].transpose(axs_list)
return im
def rot_180(im):
im = im[::-1, ::-1, ...]
return im
def rot_270(im):
axs_list = list(range(len(im.shape)))
axs_list[:2] = [1, 0]
im = im[:, ::-1, ...].transpose(axs_list)
return im
# endregion
def rgb2bgr(im):
return im[:, :, ::-1]

@ -32,7 +32,7 @@ import paddlers
from .functions import normalize, horizontal_flip, permute, vertical_flip, center_crop, is_poly, \
horizontal_flip_poly, horizontal_flip_rle, vertical_flip_poly, vertical_flip_rle, crop_poly, \
crop_rle, expand_poly, expand_rle, resize_poly, resize_rle, de_haze, pca, select_bands, \
to_intensity, to_uint8
to_intensity, to_uint8, img_flip, img_simple_rotate
__all__ = [
"Compose", "ImgDecoder", "Resize", "RandomResize", "ResizeByShort",
@ -518,6 +518,106 @@ class ResizeByLong(Transform):
return sample
class RandomFlipOrRotation(Transform):
"""
Flip or Rotate an image in different ways with a certain probability.
Args:
probs (list of float): Probabilities of flipping and rotation. Default: [0.35,0.25].
probsf (list of float): Probabilities of 5 flipping mode
(horizontal, vertical, both horizontal diction and vertical, diagonal, anti-diagonal).
Default: [0.3, 0.3, 0.2, 0.1, 0.1].
probsr (list of float): Probabilities of 3 rotation mode(90°, 180°, 270° clockwise). Default: [0.25,0.5,0.25].
Examples:
from paddlers import transforms as T
# 定义数据增强
train_transforms = T.Compose([
T.RandomFlipOrRotation(
probs = [0.3, 0.2] # 进行flip增强的概率是0.3,进行rotate增强的概率是0.2,不变的概率是0.5
probsf = [0.3, 0.25, 0, 0, 0] # flip增强时,使用水平flip、垂直flip的概率分别是0.3、0.25,水平且垂直flip、对角线flip、反对角线flip概率均为0,不变的概率是0.45
probsr = [0, 0.65, 0]), # rotate增强时,顺时针旋转90度的概率是0,顺时针旋转180度的概率是0.65,顺时针旋转90度的概率是0,不变的概率是0.35
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
"""
def __init__(self, probs=[0.35, 0.25], probsf=[0.3, 0.3, 0.2, 0.1, 0.1], probsr=[0.25,0.5,0.25]):
super(RandomFlipOrRotation, self).__init__()
# Change various probabilities into probability intervals, to judge in which mode to flip or rotate
self.probs = [probs[0], probs[0]+probs[1]]
self.probsf = self.get_probs_range(probsf)
self.probsr = self.get_probs_range(probsr)
def apply_im(self, image, mode_id, flip_mode=True):
if flip_mode:
image = img_flip(image, mode_id)
else:
image = img_simple_rotate(image, mode_id)
return image
def apply_mask(self, mask, mode_id, flip_mode=True):
if flip_mode:
mask = img_flip(mask, mode_id)
else:
mask = img_simple_rotate(mask, mode_id)
return mask
def get_probs_range(self, probs):
'''
Change various probabilities into cumulative probabilities
Args:
probs(list of float): probabilities of different mode, shape:[n]
Returns:
probability intervals(list of binary list): shape:[n, 2]
'''
ps = []
last_prob = 0
for prob in probs:
p_s = last_prob
cur_prob = prob / sum(probs)
last_prob += cur_prob
p_e = last_prob
ps.append([p_s, p_e])
return ps
def judge_probs_range(self, p, probs):
'''
Judge whether a probability value falls within the given probability interval
Args:
p(float): probability
probs(list of binary list): probability intervals, shape:[n, 2]
Returns:
mode id(int):the probability interval number where the input probability falls,
if return -1, the image will remain as it is and will not be processed
'''
for id, id_range in enumerate(probs):
if p> id_range[0] and p<id_range[1]:
return id
return -1
def apply(self, sample):
p_m = random.random()
if p_m < self.probs[0]:
mode_p = random.random()
mode_id = self.judge_probs_range(mode_p, self.probsf)
sample['image'] = self.apply_im(sample['image'], mode_id, True)
if 'mask' in sample:
sample['mask'] = self.apply_mask(sample['mask'], mode_id, True)
elif p_m < self.probs[1]:
mode_p = random.random()
mode_id = self.judge_probs_range(mode_p, self.probsr)
sample['image'] = self.apply_im(sample['image'], mode_id, False)
if 'mask' in sample:
sample['mask'] = self.apply_mask(sample['mask'], mode_id, False)
return sample
class RandomHorizontalFlip(Transform):
"""

@ -0,0 +1,190 @@
# -*- coding: utf-8 -*-
# @File : json_annotations_sta.py
# @Author : zhaoHL
# @Contact : huilin16@qq.com
# @Time Create First: 2021/8/1 10:25
# @Contributor : zhaoHL
# @Time Modify Last : 2021/8/1 10:25
'''
@File Description:
# json文件annotations信息,生成统计结果csv,对象框shape、对象看shape比例、对象框起始位置、对象结束位置、对象结束位置、对象类别、单个图像对象数量的分布
!python ./json_annotation_sta.py \
--json_path=./input/instances_val2017.json \
--csv_path=./anno_sta/instances_val2017_annotations.csv \
--png_shape_path=./anno_sta/instances_val2017_annotations_shape.png \
--png_shapeRate_path=./anno_sta/instances_val2017_annotations_shapeRate.png \
--png_pos_path=./anno_sta/instances_val2017_annotations_pos.png \
--png_posEnd_path=./anno_sta/instances_val2017_annotations_posEnd.png \
--png_cat_path=./anno_sta/instances_val2017_annotations_cat.png \
--png_objNum_path=./anno_sta/instances_val2017_annotations_objNum.png \
--get_relative=True
'''
import os
import json
import argparse
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
shp_rate_bins = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1,
2.2, 2.4, 2.6, 3, 3.5, 4, 5]
def check_dir(check_path,show=True):
if os.path.isdir(check_path):
check_directory = check_path
else:
check_directory = os.path.dirname(check_path)
if not os.path.exists(check_directory):
os.makedirs(check_directory)
if show:
print('make dir:',check_directory)
def js_anno_sta(js_path, csv_path, png_shape_path, png_shapeRate_path, png_pos_path, png_posEnd_path, png_cat_path,
png_objNum_path, get_relative, image_keyname, anno_keyname):
print('json read...\n')
with open(js_path, 'r') as load_f:
data = json.load(load_f)
df_img = pd.DataFrame(data[image_keyname])
sns.jointplot('height', 'width', data=df_img, kind='hex')
plt.close()
df_img = df_img.rename(columns={"id": "image_id", "height": "image_height", "width": "image_width"})
df_anno = pd.DataFrame(data[anno_keyname])
df_anno[['pox_x', 'pox_y', 'width', 'height']] = pd.DataFrame(df_anno['bbox'].values.tolist())
df_anno['width'] = df_anno['width'].astype(int)
df_anno['height'] = df_anno['height'].astype(int)
df_merge = pd.merge(df_img, df_anno, on="image_id")
if png_shape_path is not None:
check_dir(png_shape_path)
sns.jointplot('height', 'width', data=df_merge, kind='hex')
plt.savefig(png_shape_path)
plt.close()
print('png save to', png_shape_path)
if get_relative:
png_shapeR_path = png_shape_path.replace('.png', '_Relative.png')
df_merge['heightR'] = df_merge['height'] / df_merge['image_height']
df_merge['widthR'] = df_merge['width'] / df_merge['image_width']
sns.jointplot('heightR', 'widthR', data=df_merge, kind='hex')
plt.savefig(png_shapeR_path)
plt.close()
print('png save to', png_shapeR_path)
if png_shapeRate_path is not None:
check_dir(png_shapeRate_path)
plt.figure(figsize=(12, 8))
df_merge['shape_rate'] = (df_merge['width'] / df_merge['height']).round(1)
df_merge['shape_rate'].value_counts(sort=False, bins=shp_rate_bins).plot(kind='bar', title='images shape rate')
plt.xticks(rotation=20)
plt.savefig(png_shapeRate_path)
plt.close()
print('png save to', png_shapeRate_path)
if png_pos_path is not None:
check_dir(png_pos_path)
sns.jointplot('pox_y', 'pox_x', data=df_merge, kind='hex')
plt.savefig(png_pos_path)
plt.close()
print('png save to', png_pos_path)
if get_relative:
png_posR_path = png_pos_path.replace('.png', '_Relative.png')
df_merge['pox_yR'] = df_merge['pox_y'] / df_merge['image_height']
df_merge['pox_xR'] = df_merge['pox_x'] / df_merge['image_width']
sns.jointplot('pox_yR', 'pox_xR', data=df_merge, kind='hex')
plt.savefig(png_posR_path)
plt.close()
print('png save to', png_posR_path)
if png_posEnd_path is not None:
check_dir(png_posEnd_path)
df_merge['pox_y_end'] = df_merge['pox_y'] + df_merge['height']
df_merge['pox_x_end'] = df_merge['pox_x'] + df_merge['width']
sns.jointplot('pox_y_end', 'pox_x_end', data=df_merge, kind='hex')
plt.savefig(png_posEnd_path)
plt.close()
print('png save to', png_posEnd_path)
if get_relative:
png_posEndR_path = png_posEnd_path.replace('.png', '_Relative.png')
df_merge['pox_y_endR'] = df_merge['pox_y_end'] / df_merge['image_height']
df_merge['pox_x_endR'] = df_merge['pox_x_end'] / df_merge['image_width']
sns.jointplot('pox_y_endR', 'pox_x_endR', data=df_merge, kind='hex')
plt.savefig(png_posEndR_path)
plt.close()
print('png save to', png_posEndR_path)
if png_cat_path is not None:
check_dir(png_cat_path)
plt.figure(figsize=(12, 8))
df_merge['category_id'].value_counts().sort_index().plot(kind='bar', title='obj category')
plt.savefig(png_cat_path)
plt.close()
print('png save to', png_cat_path)
if png_objNum_path is not None:
check_dir(png_objNum_path)
plt.figure(figsize=(12, 8))
df_merge['image_id'].value_counts().value_counts().sort_index().plot(kind='bar', title='obj number per image')
# df_merge['image_id'].value_counts().value_counts(bins=np.linspace(1,31,16)).sort_index().plot(kind='bar', title='obj number per image')
plt.xticks(rotation=20)
plt.savefig(png_objNum_path)
plt.close()
print('png save to', png_objNum_path)
if csv_path is not None:
check_dir(csv_path)
df_merge.to_csv(csv_path)
print('csv save to', csv_path)
def get_args():
parser = argparse.ArgumentParser(description='Json Images Infomation Statistic')
# parameters
parser.add_argument('--json_path', type=str,
help='json path to statistic images information')
parser.add_argument('--csv_path', type=str, default=None,
help='csv path to save statistic images information, default None, do not save')
parser.add_argument('--png_shape_path', type=str, default=None,
help='png path to save statistic images shape information, default None, do not save')
parser.add_argument('--png_shapeRate_path', type=str, default=None,
help='png path to save statistic images shape rate information, default None, do not save')
parser.add_argument('--png_pos_path', type=str, default=None,
help='png path to save statistic pos information, default None, do not save')
parser.add_argument('--png_posEnd_path', type=str, default=None,
help='png path to save statistic end pos information, default None, do not save')
parser.add_argument('--png_cat_path', type=str, default=None,
help='png path to save statistic category information, default None, do not save')
parser.add_argument('--png_objNum_path', type=str, default=None,
help='png path to save statistic images object number information, default None, do not save')
parser.add_argument('--get_relative', type=bool, default=True,
help='if True, get relative result')
parser.add_argument('--image_keyname', type=str, default='images',
help='image key name in json, default images')
parser.add_argument('--anno_keyname', type=str, default='annotations',
help='annotation key name in json, default annotations')
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
help='Args_show(default: True), if True, show args info')
args = parser.parse_args()
if args.Args_show:
print('Args'.center(100, '-'))
for k, v in vars(args).items():
print('%s = %s' % (k, v))
print()
return args
if __name__ == '__main__':
args = get_args()
js_anno_sta(args.json_path, args.csv_path, args.png_shape_path, args.png_shapeRate_path,
args.png_pos_path, args.png_posEnd_path, args.png_cat_path, args.png_objNum_path,
args.get_relative, args.image_keyname, args.anno_keyname)

@ -0,0 +1,86 @@
# -*- coding: utf-8 -*-
# @File : json_getTest.py
# @Author : zhaoHL
# @Contact : huilin16@qq.com
# @Time Create First: 2021/8/1 10:25
# @Contributor : zhaoHL
# @Time Modify Last : 2021/8/1 10:25
'''
@File Description:
# 根据test影像文件夹生成test.json
!python ./json_getTest.py \
--test_image_path=./input/img_test \
--json_train_path=./output/instances_val2017.json \
--json_test_path=./output/instances_test.json
'''
import os, cv2
import json
import argparse
from tqdm import tqdm
def js_test(test_image_path, js_train_path, js_test_path, image_keyname, cat_keyname):
print('Get Test'.center(100, '-'))
print()
print('json read...\n')
data = {}
with open(js_train_path, 'r') as load_f:
data_train = json.load(load_f)
file_list = os.listdir(test_image_path)
# sort method
# file_list.sort(key=lambda x: int(x.split('.')[0]))
# file_list.sort()
print('test image read...')
with tqdm(file_list) as pbar:
images = []
for index, img_name in enumerate(pbar):
img_path = os.path.join(test_image_path, img_name)
img = cv2.imread(img_path)
tmp = {}
tmp['id'] = index
tmp['width'] = img.shape[1]
tmp['height'] = img.shape[0]
tmp['file_name'] = img_name
images.append(tmp)
print('\n total test image:', len(file_list))
data[image_keyname] = images
data[cat_keyname] = data_train[cat_keyname]
with open(js_test_path, 'w') as f:
json.dump(data, f)
def get_args():
parser = argparse.ArgumentParser(description='Get Test Json')
# parameters
parser.add_argument('--test_image_path', type=str,
help='test image path')
parser.add_argument('--json_train_path', type=str,
help='train json path, provide categories information')
parser.add_argument('--json_test_path', type=str,
help='test json path to save')
parser.add_argument('--image_keyname', type=str, default='images',
help='image key name in json, default images')
parser.add_argument('--cat_keyname', type=str, default='categories',
help='categories key name in json, default categories')
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
help='Args_show(default: True), if True, show args info')
args = parser.parse_args()
if args.Args_show:
print('Args'.center(100, '-'))
for k, v in vars(args).items():
print('%s = %s' % (k, v))
print()
return args
if __name__ == '__main__':
args = get_args()
js_test(args.test_image_path, args.json_train_path, args.json_test_path, args.image_keyname, args.cat_keyname)

@ -0,0 +1,93 @@
# -*- coding: utf-8 -*-
# @File : json_images_sta.py
# @Author : zhaoHL
# @Contact : huilin16@qq.com
# @Time Create First: 2021/8/1 10:25
# @Contributor : zhaoHL
# @Time Modify Last : 2021/8/1 10:25
'''
@File Description:
# 统计json文件images信息,生成统计结果csv,同时生成图像shape、图像shape比例的二维分布图
!python ./json_images_sta.py \
--json_path=./input/instances_val2017.json \
--csv_path=./img_sta/instances_val2017_images.csv \
--png_shape_path=./img_sta/instances_val2017_images_shape.png \
--png_shapeRate_path=./img_sta/instances_val2017_images_shapeRate.png
'''
import json
import argparse
import os.path
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
def check_dir(check_path,show=True):
if os.path.isdir(check_path):
check_directory = check_path
else:
check_directory = os.path.dirname(check_path)
if not os.path.exists(check_directory):
os.makedirs(check_directory)
if show:
print('make dir:',check_directory)
def js_img_sta(js_path, csv_path, png_shape_path, png_shapeRate_path, image_keyname):
print('json read...\n')
with open(js_path, 'r') as load_f:
data = json.load(load_f)
df_img = pd.DataFrame(data[image_keyname])
if png_shape_path is not None:
check_dir(png_shape_path)
sns.jointplot('height', 'width', data=df_img, kind='hex')
plt.savefig(png_shape_path)
plt.close()
print('png save to', png_shape_path)
if png_shapeRate_path is not None:
check_dir(png_shapeRate_path)
df_img['shape_rate'] = (df_img['width'] / df_img['height']).round(1)
df_img['shape_rate'].value_counts().sort_index().plot(kind='bar', title='images shape rate')
plt.savefig(png_shapeRate_path)
plt.close()
print('png save to', png_shapeRate_path)
if csv_path is not None:
check_dir(csv_path)
df_img.to_csv(csv_path)
print('csv save to', csv_path)
def get_args():
parser = argparse.ArgumentParser(description='Json Images Infomation Statistic')
# parameters
parser.add_argument('--json_path', type=str,
help='json path to statistic images information')
parser.add_argument('--csv_path', type=str, default=None,
help='csv path to save statistic images information, default None, do not save')
parser.add_argument('--png_shape_path', type=str, default=None,
help='png path to save statistic images shape information, default None, do not save')
parser.add_argument('--png_shapeRate_path', type=str, default=None,
help='png path to save statistic images shape rate information, default None, do not save')
parser.add_argument('--image_keyname', type=str, default='images',
help='image key name in json, default images')
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
help='Args_show(default: True), if True, show args info')
args = parser.parse_args()
if args.Args_show:
print('Args'.center(100, '-'))
for k, v in vars(args).items():
print('%s = %s' % (k, v))
print()
return args
if __name__ == '__main__':
args = get_args()
js_img_sta(args.json_path, args.csv_path, args.png_shape_path, args.png_shapeRate_path, args.image_keyname)

@ -0,0 +1,65 @@
# -*- coding: utf-8 -*-
# @File : json_infoShow.py
# @Author : zhaoHL
# @Contact : huilin16@qq.com
# @Time Create First: 2021/8/1 10:25
# @Contributor : zhaoHL
# @Time Modify Last : 2021/8/1 10:25
'''
@File Description:
# 输出json文件基本信息
!python ./json_infoShow.py \
--json_path=./input/instances_val2017.json
'''
import json
import argparse
def js_show(js_path, show_num):
print('Info'.center(100,'-'))
print('json read...')
with open(js_path, 'r') as load_f:
data = json.load(load_f)
print('json keys:',data.keys(),'\n')
for k, v in data.items():
print(k.center(50, '*'))
show_num_t = show_num if len(v)>show_num else len(v)
if isinstance(v, list):
print(' Content Type: list\n Total Length: %d\n First %d record:\n'%(len(v),show_num_t))
for i in range(show_num_t):
print(v[i])
elif isinstance(v, dict):
print(' Content Type: dict\n Total Length: %d\n First %d record:\n'%(len(v),show_num_t))
for i,(kv,vv) in enumerate(v.items()):
if i<show_num_t:
print(kv,':',vv)
print('...\n...\n')
def get_args():
parser = argparse.ArgumentParser(description='Json Infomation Show')
# parameters
parser.add_argument('--json_path', type=str,
help='json path to show information')
parser.add_argument('--show_num', type=int, default=5,
help='show number of each sub record')
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
help='Args_show(default: True), if True, show args info')
args = parser.parse_args()
if args.Args_show:
print('Args'.center(100,'-'))
for k, v in vars(args).items():
print('%s = %s' % (k, v))
print()
return args
if __name__ == '__main__':
args = get_args()
js_show(args.json_path, args.show_num)

@ -0,0 +1,78 @@
# -*- coding: utf-8 -*-
# @File : json_merge.py
# @Author : zhaoHL
# @Contact : huilin16@qq.com
# @Time Create First: 2021/8/1 10:25
# @Contributor : zhaoHL
# @Time Modify Last : 2021/8/1 10:25
'''
@File Description:
# 合并json文件,可以通过merge_keys控制合并的字段, 默认合并'images', 'annotations'字段
!python ./json_merge.py \
--json1_path=./input/instances_train2017.json \
--json2_path=./input/instances_val2017.json \
--save_path=./output/instances_trainval2017.json
'''
import json
import argparse
def js_merge(js1_path, js2_path, js_merge_path, merge_keys):
print('Merge'.center(100, '-'))
print()
print('json read...\n')
with open(js1_path, 'r') as load_f:
data1 = json.load(load_f)
with open(js2_path, 'r') as load_f:
data2 = json.load(load_f)
print('json merge...')
data = {}
for k, v in data1.items():
if k not in merge_keys:
data[k] = v
print(k)
else:
data[k] = data1[k] + data2[k]
print(k, 'merge!')
print()
print('json save...\n')
data_str = json.dumps(data, ensure_ascii=False)
with open(js_merge_path, 'w', encoding='utf-8') as save_f:
save_f.write(data_str)
print('finish!')
def get_args():
parser = argparse.ArgumentParser(description='Json Merge')
# parameters
parser.add_argument('--json1_path', type=str,
help='json path1 to merge')
parser.add_argument('--json2_path', type=str,
help='json path2 to merge')
parser.add_argument('--save_path', type=str,
help='json path to save the merge result')
parser.add_argument('--merge_keys', type=list, default=['images', 'annotations'],
help='json keys that need to merge')
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
help='Args_show(default: True), if True, show args info')
args = parser.parse_args()
if args.Args_show:
print('Args'.center(100, '-'))
for k, v in vars(args).items():
print('%s = %s' % (k, v))
print()
return args
if __name__ == '__main__':
args = get_args()
js_merge(args.json1_path, args.json2_path, args.save_path, args.merge_keys)

@ -0,0 +1,111 @@
# -*- coding: utf-8 -*-
# @File : json_split.py
# @Author : zhaoHL
# @Contact : huilin16@qq.com
# @Time Create First: 2021/8/1 10:25
# @Contributor : zhaoHL
# @Time Modify Last : 2021/8/1 10:25
'''
@File Description:
# json数据集划分,可以通过val_split_rate、val_split_num控制划分比例或个数, keep_val_inTrain可以设定是否在train中保留val相关信息
!python ./json_split.py \
--json_all_path=./input/instances_val2017.json \
--json_train_path=./output/instances_val2017_split1.json \
--json_val_path=./output/instances_val2017_split2.json
'''
import json
import argparse
import pandas as pd
def get_annno(df_img_split, df_anno):
df_merge = pd.merge(df_img_split, df_anno, on="image_id")
df_anno_split = df_merge[df_anno.columns.to_list()]
df_anno_split = df_anno_split.sort_values(by='id')
return df_anno_split
def js_split(js_all_path, js_train_path, js_val_path, val_split_rate, val_split_num, keep_val_inTrain,
image_keyname, anno_keyname):
print('Split'.center(100,'-'))
print()
print('json read...\n')
with open(js_all_path, 'r') as load_f:
data = json.load(load_f)
df_anno = pd.DataFrame(data[anno_keyname])
df_img = pd.DataFrame(data[image_keyname])
df_img = df_img.rename(columns={"id": "image_id"})
df_img = df_img.sample(frac=1, random_state=0)
if val_split_num is None:
val_split_num = int(val_split_rate*len(df_img))
if keep_val_inTrain:
df_img_train = df_img
df_img_val = df_img[: val_split_num]
df_anno_train = df_anno
df_anno_val = get_annno(df_img_val, df_anno)
else:
df_img_train = df_img[val_split_num:]
df_img_val = df_img[: val_split_num]
df_anno_train = get_annno(df_img_train, df_anno)
df_anno_val = get_annno(df_img_val, df_anno)
df_img_train = df_img_train.rename(columns={"image_id": "id"}).sort_values(by='id')
df_img_val =df_img_val.rename(columns={"image_id": "id"}).sort_values(by='id')
data[image_keyname] = json.loads(df_img_train.to_json(orient='records'))
data[anno_keyname] = json.loads(df_anno_train.to_json(orient='records'))
str_json = json.dumps(data, ensure_ascii=False)
with open(js_train_path, 'w', encoding='utf-8') as file_obj:
file_obj.write(str_json)
data[image_keyname] = json.loads(df_img_val.to_json(orient='records'))
data[anno_keyname] = json.loads(df_anno_val.to_json(orient='records'))
str_json = json.dumps(data, ensure_ascii=False)
with open(js_val_path, 'w', encoding='utf-8') as file_obj:
file_obj.write(str_json)
print('image total %d, train %d, val %d'%(len(df_img), len(df_img_train), len(df_img_val)))
print('anno total %d, train %d, val %d'%(len(df_anno), len(df_anno_train), len(df_anno_val)))
return df_img
def get_args():
parser = argparse.ArgumentParser(description='Json Merge')
# parameters
parser.add_argument('--json_all_path', type=str,
help='json path to split')
parser.add_argument('--json_train_path', type=str,
help='json path to save the split result -- train part')
parser.add_argument('--json_val_path', type=str,
help='json path to save the split result -- val part')
parser.add_argument('--val_split_rate', type=float, default=0.1,
help='val image number rate in total image, default is 0.1; if val_split_num is set, val_split_rate will not work')
parser.add_argument('--val_split_num', type=int, default=None,
help='val image number in total image, default is None; if val_split_num is set, val_split_rate will not work')
parser.add_argument('--keep_val_inTrain', type=bool, default=False,
help='if true, val part will be in train as well; which means that the content of json_train_path is the same as the content of json_all_path')
parser.add_argument('--image_keyname', type=str, default='images',
help='image key name in json, default images')
parser.add_argument('--anno_keyname', type=str, default='annotations',
help='annotation key name in json, default annotations')
parser.add_argument('-Args_show', '--Args_show', type=bool, default=True,
help='Args_show(default: True), if True, show args info')
args = parser.parse_args()
if args.Args_show:
print('Args'.center(100,'-'))
for k, v in vars(args).items():
print('%s = %s' % (k, v))
print()
return args
if __name__ == '__main__':
args = get_args()
js_split(args.json_all_path,args.json_train_path,args.json_val_path, args.val_split_rate, args.val_split_num,
args.keep_val_inTrain, args.image_keyname, args.anno_keyname)
Loading…
Cancel
Save