[Feat] Init add post-proc (building regularization) (#44)

* [Style] Update space

* [Feat] Init add postproc regularization

* [Feat] Init add building regularization

* [Docs] Update note about regularization
own
Yizhou Chen 2 years ago committed by GitHub
parent 87ecbafa94
commit 9625d958e3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 1
      paddlers/utils/__init__.py
  2. 15
      paddlers/utils/postprocs/__init__.py
  3. 264
      paddlers/utils/postprocs/regularization.py
  4. 113
      paddlers/utils/postprocs/utils.py

@ -14,6 +14,7 @@
from . import logging
from . import utils
from . import postprocs
from .utils import (seconds_to_hms, get_encoding, get_single_card_bs, dict2str,
EarlyStop, norm_path, is_pic, MyEncoder, DisablePrint,
Timer, to_data_parallel, scheduler_step)

@ -0,0 +1,15 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .regularization import building_regularization

@ -0,0 +1,264 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import cv2
import numpy as np
from .utils import (calc_distance, calc_angle, calc_azimuth, rotation, line,
intersection, calc_distance_between_lines,
calc_project_in_line)
S = 20
TD = 3
D = TD + 1
ALPHA = math.degrees(math.pi / 6)
BETA = math.degrees(math.pi * 17 / 18)
DELTA = math.degrees(math.pi / 12)
THETA = math.degrees(math.pi / 4)
def building_regularization(mask: np.ndarray, W: int=32) -> np.ndarray:
"""
Translate the mask of building into structured mask.
The original article refers to
Wei S, Ji S, Lu M. "Toward Automatic Building Footprint Delineation From Aerial Images Using CNN and Regularization."
(https://ieeexplore.ieee.org/document/8933116).
This algorithm has no public code.
The implementation procedure refers to original article and this repo:
https://github.com/niecongchong/RS-building-regularization
The implementation is not fully consistent with the article.
Args:
mask (np.ndarray): Mask of building.
W (int, optional): Minimum threshold in main direction. Default is 32.
The larger W, the more regular the image, but the worse the image detail.
Returns:
np.ndarray: Mask of building after regularized.
"""
# check and pro processing
mask_shape = mask.shape
if len(mask_shape) != 2:
mask = mask[..., 0]
mask = cv2.medianBlur(mask, 5)
class_num = len(np.unique(mask))
if class_num != 2:
_, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY |
cv2.THRESH_OTSU)
mask = np.clip(mask, 0, 1).astype("uint8") # 0-255 / 0-1 -> 0-1
mask_shape = mask.shape
# find contours
contours, hierarchys = cv2.findContours(mask, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
if not contours:
raise ValueError("There are no contours.")
# adjust
res_contours = []
for contour, hierarchy in zip(contours, hierarchys[0]):
contour = _coarse(contour, mask_shape) # coarse
if contour is None:
continue
contour = _fine(contour, W) # fine
res_contours.append((contour, _get_priority(hierarchy)))
result = _fill(mask, res_contours) # fill
result = cv2.morphologyEx(result, cv2.MORPH_OPEN,
cv2.getStructuringElement(cv2.MORPH_RECT,
(3, 3))) # open
return result
def _coarse(contour, img_shape):
def _inline_check(point, shape, eps=5):
x, y = point[0]
iH, iW = shape
if x < eps or x > iH - eps or y < eps or y > iW - eps:
return False
else:
return True
area = cv2.contourArea(contour)
# S = 20
if area < S: # remove polygons whose area is below a threshold S
return None
# D = 0.3 if area < 200 else 1.0
# TD = 0.5 if area < 200 else 0.9
epsilon = 0.005 * cv2.arcLength(contour, True)
contour = cv2.approxPolyDP(contour, epsilon, True) # DP
p_number = contour.shape[0]
idx = 0
while idx < p_number:
last_point = contour[idx - 1]
current_point = contour[idx]
next_idx = (idx + 1) % p_number
next_point = contour[next_idx]
# remove edges whose lengths are below a given side length TD
# that varies with the area of a building.
distance = calc_distance(current_point, next_point)
if distance < TD and not _inline_check(next_point, img_shape):
contour = np.delete(contour, next_idx, axis=0)
p_number -= 1
continue
# remove over-sharp angles with threshold α.
# remove over-smooth angles with threshold β.
angle = calc_angle(last_point, current_point, next_point)
if (ALPHA > angle or angle > BETA) and _inline_check(current_point,
img_shape):
contour = np.delete(contour, idx, axis=0)
p_number -= 1
continue
idx += 1
if p_number > 2:
return contour
else:
return None
def _fine(contour, W):
# area = cv2.contourArea(contour)
# W = 6 if area < 200 else 8
# TD = 0.5 if area < 200 else 0.9
# D = TD + 0.3
nW = W
p_number = contour.shape[0]
distance_list = []
azimuth_list = []
indexs_list = []
for idx in range(p_number):
current_point = contour[idx]
next_idx = (idx + 1) % p_number
next_point = contour[next_idx]
distance_list.append(calc_distance(current_point, next_point))
azimuth_list.append(calc_azimuth(current_point, next_point))
indexs_list.append((idx, next_idx))
# add the direction of the longest edge to the list of main direction.
longest_distance_idx = np.argmax(distance_list)
main_direction_list = [azimuth_list[longest_distance_idx]]
max_dis = distance_list[longest_distance_idx]
if max_dis <= nW:
nW = max_dis - 1e-6
# Add other edges’ direction to the list of main directions
# according to the angle threshold δ between their directions
# and directions in the list.
for distance, azimuth in zip(distance_list, azimuth_list):
for mdir in main_direction_list:
abs_dif_ang = abs(mdir - azimuth)
if distance > nW and THETA <= abs_dif_ang <= (180 - THETA):
main_direction_list.append(azimuth)
contour_by_lines = []
md_used_list = [main_direction_list[0]]
for distance, azimuth, (idx, next_idx) in zip(distance_list, azimuth_list,
indexs_list):
p1 = contour[idx]
p2 = contour[next_idx]
pm = (p1 + p2) / 2
# find long edges with threshold W that varies with building’s area.
if distance > nW:
rotate_ang = main_direction_list[0] - azimuth
for main_direction in main_direction_list:
r_ang = main_direction - azimuth
if abs(r_ang) < abs(rotate_ang):
rotate_ang = r_ang
md_used_list.append(main_direction)
abs_rotate_ang = abs(rotate_ang)
# adjust long edges according to the list and angles.
if abs_rotate_ang < DELTA or abs_rotate_ang > (180 - DELTA):
rp1 = rotation(p1, pm, rotate_ang)
rp2 = rotation(p2, pm, rotate_ang)
elif (90 - DELTA) < abs_rotate_ang < (90 + DELTA):
rp1 = rotation(p1, pm, rotate_ang - 90)
rp2 = rotation(p2, pm, rotate_ang - 90)
else:
rp1, rp2 = p1, p2
# adjust short edges (judged by a threshold θ) according to the list and angles.
else:
rotate_ang = md_used_list[-1] - azimuth
abs_rotate_ang = abs(rotate_ang)
if abs_rotate_ang < THETA or abs_rotate_ang > (180 - THETA):
rp1 = rotation(p1, pm, rotate_ang)
rp2 = rotation(p2, pm, rotate_ang)
else:
rp1 = rotation(p1, pm, rotate_ang - 90)
rp2 = rotation(p2, pm, rotate_ang - 90)
# contour_by_lines.extend([rp1, rp2])
contour_by_lines.append([rp1[0], rp2[0]])
correct_points = np.array(contour_by_lines)
# merge (or connect) parallel lines if the distance between
# two lines is less than (or larger than) a threshold D.
final_points = []
final_points.append(correct_points[0][0].reshape([1, 2]))
lp_number = correct_points.shape[0] - 1
for idx in range(lp_number):
next_idx = (idx + 1) if idx < lp_number else 0
cur_edge_p1 = correct_points[idx][0]
cur_edge_p2 = correct_points[idx][1]
next_edge_p1 = correct_points[next_idx][0]
next_edge_p2 = correct_points[next_idx][1]
L1 = line(cur_edge_p1, cur_edge_p2)
L2 = line(next_edge_p1, next_edge_p2)
A1 = calc_azimuth([cur_edge_p1], [cur_edge_p2])
A2 = calc_azimuth([next_edge_p1], [next_edge_p2])
dif_azi = abs(A1 - A2)
# find intersection point if not parallel
if (90 - DELTA) < dif_azi < (90 + DELTA):
point_intersection = intersection(L1, L2)
if point_intersection is not None:
final_points.append(point_intersection)
# move or add lines when parallel
elif dif_azi < 1e-6:
marg = calc_distance_between_lines(L1, L2)
if marg < D:
# move
point_move = calc_project_in_line(next_edge_p1, cur_edge_p1,
cur_edge_p2)
final_points.append(point_move)
# update next
correct_points[next_idx][0] = point_move
correct_points[next_idx][1] = calc_project_in_line(
next_edge_p2, cur_edge_p1, cur_edge_p2)
else:
# add line
add_mid_point = (cur_edge_p2 + next_edge_p1) / 2
rp1 = calc_project_in_line(add_mid_point, cur_edge_p1,
cur_edge_p2)
rp2 = calc_project_in_line(add_mid_point, next_edge_p1,
next_edge_p2)
final_points.extend([rp1, rp2])
else:
final_points.extend(
[cur_edge_p1[np.newaxis, :], cur_edge_p2[np.newaxis, :]])
final_points = np.array(final_points)
return final_points
def _get_priority(hierarchy):
if hierarchy[3] < 0:
return 1
if hierarchy[2] < 0:
return 2
return 3
def _fill(img, coarse_conts):
result = np.zeros_like(img)
sorted(coarse_conts, key=lambda x: x[1])
for contour, priority in coarse_conts:
if priority == 2:
cv2.fillPoly(result, [contour.astype(np.int32)], (0, 0, 0))
else:
cv2.fillPoly(result, [contour.astype(np.int32)], (255, 255, 255))
return result

@ -0,0 +1,113 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import math
def calc_distance(p1: np.ndarray, p2: np.ndarray) -> float:
return float(np.sqrt(np.sum(np.power((p1[0] - p2[0]), 2))))
def calc_angle(p1: np.ndarray, vertex: np.ndarray, p2: np.ndarray) -> float:
x1, y1 = p1[0]
xv, yv = vertex[0]
x2, y2 = p2[0]
a = ((xv - x2) * (xv - x2) + (yv - y2) * (yv - y2))**0.5
b = ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))**0.5
c = ((x1 - xv) * (x1 - xv) + (y1 - yv) * (y1 - yv))**0.5
return math.degrees(math.acos((b**2 - a**2 - c**2) / (-2 * a * c)))
def calc_azimuth(p1: np.ndarray, p2: np.ndarray) -> float:
x1, y1 = p1[0]
x2, y2 = p2[0]
if y1 == y2:
return 0.0
if x1 == x2:
return 90.0
elif x1 < x2:
if y1 < y2:
ang = math.atan((y2 - y1) / (x2 - x1))
return math.degrees(ang)
else:
ang = math.atan((y1 - y2) / (x2 - x1))
return 180 - math.degrees(ang)
else: # x1 > x2
if y1 < y2:
ang = math.atan((y2 - y1) / (x1 - x2))
return 180 - math.degrees(ang)
else:
ang = math.atan((y1 - y2) / (x1 - x2))
return math.degrees(ang)
def rotation(point: np.ndarray, center: np.ndarray, angle: float) -> np.ndarray:
if angle == 0:
return point
x, y = point[0]
cx, cy = center[0]
radian = math.radians(abs(angle))
if angle > 0: # clockwise
rx = (x - cx) * math.cos(radian) - (y - cy) * math.sin(radian) + cx
ry = (x - cx) * math.sin(radian) + (y - cy) * math.cos(radian) + cy
else:
rx = (x - cx) * math.cos(radian) + (y - cy) * math.sin(radian) + cx
ry = (y - cy) * math.cos(radian) - (x - cx) * math.sin(radian) + cy
return np.array([[rx, ry]])
def line(p1, p2):
A = (p1[1] - p2[1])
B = (p2[0] - p1[0])
C = (p1[0] * p2[1] - p2[0] * p1[1])
return A, B, -C
def intersection(L1, L2):
D = L1[0] * L2[1] - L1[1] * L2[0]
Dx = L1[2] * L2[1] - L1[1] * L2[2]
Dy = L1[0] * L2[2] - L1[2] * L2[0]
if D != 0:
x = Dx / D
y = Dy / D
return np.array([[x, y]])
else:
return None
def calc_distance_between_lines(L1, L2):
eps = 1e-16
A1, _, C1 = L1
A2, B2, C2 = L2
new_C1 = C1 / (A1 + eps)
new_A2 = 1
new_B2 = B2 / (A2 + eps)
new_C2 = C2 / (A2 + eps)
dist = (np.abs(new_C1 - new_C2)) / (
np.sqrt(new_A2 * new_A2 + new_B2 * new_B2) + eps)
return dist
def calc_project_in_line(point, line_point1, line_point2):
eps = 1e-16
m, n = point
x1, y1 = line_point1
x2, y2 = line_point2
F = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)
x = (m * (x2 - x1) * (x2 - x1) + n * (y2 - y1) * (x2 - x1) +
(x1 * y2 - x2 * y1) * (y2 - y1)) / (F + eps)
y = (m * (x2 - x1) * (y2 - y1) + n * (y2 - y1) * (y2 - y1) +
(x2 * y1 - x1 * y2) * (x2 - x1)) / (F + eps)
return np.array([[x, y]])
Loading…
Cancel
Save