[Feat] Init add post-proc (building regularization) (#44)
* [Style] Update space * [Feat] Init add postproc regularization * [Feat] Init add building regularization * [Docs] Update note about regularizationown
parent
87ecbafa94
commit
9625d958e3
5 changed files with 394 additions and 1 deletions
@ -0,0 +1,15 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from .regularization import building_regularization |
@ -0,0 +1,264 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import math |
||||
import cv2 |
||||
import numpy as np |
||||
from .utils import (calc_distance, calc_angle, calc_azimuth, rotation, line, |
||||
intersection, calc_distance_between_lines, |
||||
calc_project_in_line) |
||||
|
||||
S = 20 |
||||
TD = 3 |
||||
D = TD + 1 |
||||
|
||||
ALPHA = math.degrees(math.pi / 6) |
||||
BETA = math.degrees(math.pi * 17 / 18) |
||||
DELTA = math.degrees(math.pi / 12) |
||||
THETA = math.degrees(math.pi / 4) |
||||
|
||||
|
||||
def building_regularization(mask: np.ndarray, W: int=32) -> np.ndarray: |
||||
""" |
||||
Translate the mask of building into structured mask. |
||||
|
||||
The original article refers to |
||||
Wei S, Ji S, Lu M. "Toward Automatic Building Footprint Delineation From Aerial Images Using CNN and Regularization." |
||||
(https://ieeexplore.ieee.org/document/8933116). |
||||
|
||||
This algorithm has no public code. |
||||
The implementation procedure refers to original article and this repo: |
||||
https://github.com/niecongchong/RS-building-regularization |
||||
|
||||
The implementation is not fully consistent with the article. |
||||
|
||||
Args: |
||||
mask (np.ndarray): Mask of building. |
||||
W (int, optional): Minimum threshold in main direction. Default is 32. |
||||
The larger W, the more regular the image, but the worse the image detail. |
||||
|
||||
Returns: |
||||
np.ndarray: Mask of building after regularized. |
||||
""" |
||||
# check and pro processing |
||||
mask_shape = mask.shape |
||||
if len(mask_shape) != 2: |
||||
mask = mask[..., 0] |
||||
mask = cv2.medianBlur(mask, 5) |
||||
class_num = len(np.unique(mask)) |
||||
if class_num != 2: |
||||
_, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY | |
||||
cv2.THRESH_OTSU) |
||||
mask = np.clip(mask, 0, 1).astype("uint8") # 0-255 / 0-1 -> 0-1 |
||||
mask_shape = mask.shape |
||||
# find contours |
||||
contours, hierarchys = cv2.findContours(mask, cv2.RETR_TREE, |
||||
cv2.CHAIN_APPROX_SIMPLE) |
||||
if not contours: |
||||
raise ValueError("There are no contours.") |
||||
# adjust |
||||
res_contours = [] |
||||
for contour, hierarchy in zip(contours, hierarchys[0]): |
||||
contour = _coarse(contour, mask_shape) # coarse |
||||
if contour is None: |
||||
continue |
||||
contour = _fine(contour, W) # fine |
||||
res_contours.append((contour, _get_priority(hierarchy))) |
||||
result = _fill(mask, res_contours) # fill |
||||
result = cv2.morphologyEx(result, cv2.MORPH_OPEN, |
||||
cv2.getStructuringElement(cv2.MORPH_RECT, |
||||
(3, 3))) # open |
||||
return result |
||||
|
||||
|
||||
def _coarse(contour, img_shape): |
||||
def _inline_check(point, shape, eps=5): |
||||
x, y = point[0] |
||||
iH, iW = shape |
||||
if x < eps or x > iH - eps or y < eps or y > iW - eps: |
||||
return False |
||||
else: |
||||
return True |
||||
|
||||
area = cv2.contourArea(contour) |
||||
# S = 20 |
||||
if area < S: # remove polygons whose area is below a threshold S |
||||
return None |
||||
# D = 0.3 if area < 200 else 1.0 |
||||
# TD = 0.5 if area < 200 else 0.9 |
||||
epsilon = 0.005 * cv2.arcLength(contour, True) |
||||
contour = cv2.approxPolyDP(contour, epsilon, True) # DP |
||||
p_number = contour.shape[0] |
||||
idx = 0 |
||||
while idx < p_number: |
||||
last_point = contour[idx - 1] |
||||
current_point = contour[idx] |
||||
next_idx = (idx + 1) % p_number |
||||
next_point = contour[next_idx] |
||||
# remove edges whose lengths are below a given side length TD |
||||
# that varies with the area of a building. |
||||
distance = calc_distance(current_point, next_point) |
||||
if distance < TD and not _inline_check(next_point, img_shape): |
||||
contour = np.delete(contour, next_idx, axis=0) |
||||
p_number -= 1 |
||||
continue |
||||
# remove over-sharp angles with threshold α. |
||||
# remove over-smooth angles with threshold β. |
||||
angle = calc_angle(last_point, current_point, next_point) |
||||
if (ALPHA > angle or angle > BETA) and _inline_check(current_point, |
||||
img_shape): |
||||
contour = np.delete(contour, idx, axis=0) |
||||
p_number -= 1 |
||||
continue |
||||
idx += 1 |
||||
if p_number > 2: |
||||
return contour |
||||
else: |
||||
return None |
||||
|
||||
|
||||
def _fine(contour, W): |
||||
# area = cv2.contourArea(contour) |
||||
# W = 6 if area < 200 else 8 |
||||
# TD = 0.5 if area < 200 else 0.9 |
||||
# D = TD + 0.3 |
||||
nW = W |
||||
p_number = contour.shape[0] |
||||
distance_list = [] |
||||
azimuth_list = [] |
||||
indexs_list = [] |
||||
for idx in range(p_number): |
||||
current_point = contour[idx] |
||||
next_idx = (idx + 1) % p_number |
||||
next_point = contour[next_idx] |
||||
distance_list.append(calc_distance(current_point, next_point)) |
||||
azimuth_list.append(calc_azimuth(current_point, next_point)) |
||||
indexs_list.append((idx, next_idx)) |
||||
# add the direction of the longest edge to the list of main direction. |
||||
longest_distance_idx = np.argmax(distance_list) |
||||
main_direction_list = [azimuth_list[longest_distance_idx]] |
||||
max_dis = distance_list[longest_distance_idx] |
||||
if max_dis <= nW: |
||||
nW = max_dis - 1e-6 |
||||
# Add other edges’ direction to the list of main directions |
||||
# according to the angle threshold δ between their directions |
||||
# and directions in the list. |
||||
for distance, azimuth in zip(distance_list, azimuth_list): |
||||
for mdir in main_direction_list: |
||||
abs_dif_ang = abs(mdir - azimuth) |
||||
if distance > nW and THETA <= abs_dif_ang <= (180 - THETA): |
||||
main_direction_list.append(azimuth) |
||||
contour_by_lines = [] |
||||
md_used_list = [main_direction_list[0]] |
||||
for distance, azimuth, (idx, next_idx) in zip(distance_list, azimuth_list, |
||||
indexs_list): |
||||
p1 = contour[idx] |
||||
p2 = contour[next_idx] |
||||
pm = (p1 + p2) / 2 |
||||
# find long edges with threshold W that varies with building’s area. |
||||
if distance > nW: |
||||
rotate_ang = main_direction_list[0] - azimuth |
||||
for main_direction in main_direction_list: |
||||
r_ang = main_direction - azimuth |
||||
if abs(r_ang) < abs(rotate_ang): |
||||
rotate_ang = r_ang |
||||
md_used_list.append(main_direction) |
||||
abs_rotate_ang = abs(rotate_ang) |
||||
# adjust long edges according to the list and angles. |
||||
if abs_rotate_ang < DELTA or abs_rotate_ang > (180 - DELTA): |
||||
rp1 = rotation(p1, pm, rotate_ang) |
||||
rp2 = rotation(p2, pm, rotate_ang) |
||||
elif (90 - DELTA) < abs_rotate_ang < (90 + DELTA): |
||||
rp1 = rotation(p1, pm, rotate_ang - 90) |
||||
rp2 = rotation(p2, pm, rotate_ang - 90) |
||||
else: |
||||
rp1, rp2 = p1, p2 |
||||
# adjust short edges (judged by a threshold θ) according to the list and angles. |
||||
else: |
||||
rotate_ang = md_used_list[-1] - azimuth |
||||
abs_rotate_ang = abs(rotate_ang) |
||||
if abs_rotate_ang < THETA or abs_rotate_ang > (180 - THETA): |
||||
rp1 = rotation(p1, pm, rotate_ang) |
||||
rp2 = rotation(p2, pm, rotate_ang) |
||||
else: |
||||
rp1 = rotation(p1, pm, rotate_ang - 90) |
||||
rp2 = rotation(p2, pm, rotate_ang - 90) |
||||
# contour_by_lines.extend([rp1, rp2]) |
||||
contour_by_lines.append([rp1[0], rp2[0]]) |
||||
correct_points = np.array(contour_by_lines) |
||||
# merge (or connect) parallel lines if the distance between |
||||
# two lines is less than (or larger than) a threshold D. |
||||
final_points = [] |
||||
final_points.append(correct_points[0][0].reshape([1, 2])) |
||||
lp_number = correct_points.shape[0] - 1 |
||||
for idx in range(lp_number): |
||||
next_idx = (idx + 1) if idx < lp_number else 0 |
||||
cur_edge_p1 = correct_points[idx][0] |
||||
cur_edge_p2 = correct_points[idx][1] |
||||
next_edge_p1 = correct_points[next_idx][0] |
||||
next_edge_p2 = correct_points[next_idx][1] |
||||
L1 = line(cur_edge_p1, cur_edge_p2) |
||||
L2 = line(next_edge_p1, next_edge_p2) |
||||
A1 = calc_azimuth([cur_edge_p1], [cur_edge_p2]) |
||||
A2 = calc_azimuth([next_edge_p1], [next_edge_p2]) |
||||
dif_azi = abs(A1 - A2) |
||||
# find intersection point if not parallel |
||||
if (90 - DELTA) < dif_azi < (90 + DELTA): |
||||
point_intersection = intersection(L1, L2) |
||||
if point_intersection is not None: |
||||
final_points.append(point_intersection) |
||||
# move or add lines when parallel |
||||
elif dif_azi < 1e-6: |
||||
marg = calc_distance_between_lines(L1, L2) |
||||
if marg < D: |
||||
# move |
||||
point_move = calc_project_in_line(next_edge_p1, cur_edge_p1, |
||||
cur_edge_p2) |
||||
final_points.append(point_move) |
||||
# update next |
||||
correct_points[next_idx][0] = point_move |
||||
correct_points[next_idx][1] = calc_project_in_line( |
||||
next_edge_p2, cur_edge_p1, cur_edge_p2) |
||||
else: |
||||
# add line |
||||
add_mid_point = (cur_edge_p2 + next_edge_p1) / 2 |
||||
rp1 = calc_project_in_line(add_mid_point, cur_edge_p1, |
||||
cur_edge_p2) |
||||
rp2 = calc_project_in_line(add_mid_point, next_edge_p1, |
||||
next_edge_p2) |
||||
final_points.extend([rp1, rp2]) |
||||
else: |
||||
final_points.extend( |
||||
[cur_edge_p1[np.newaxis, :], cur_edge_p2[np.newaxis, :]]) |
||||
final_points = np.array(final_points) |
||||
return final_points |
||||
|
||||
|
||||
def _get_priority(hierarchy): |
||||
if hierarchy[3] < 0: |
||||
return 1 |
||||
if hierarchy[2] < 0: |
||||
return 2 |
||||
return 3 |
||||
|
||||
|
||||
def _fill(img, coarse_conts): |
||||
result = np.zeros_like(img) |
||||
sorted(coarse_conts, key=lambda x: x[1]) |
||||
for contour, priority in coarse_conts: |
||||
if priority == 2: |
||||
cv2.fillPoly(result, [contour.astype(np.int32)], (0, 0, 0)) |
||||
else: |
||||
cv2.fillPoly(result, [contour.astype(np.int32)], (255, 255, 255)) |
||||
return result |
@ -0,0 +1,113 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import numpy as np |
||||
import math |
||||
|
||||
|
||||
def calc_distance(p1: np.ndarray, p2: np.ndarray) -> float: |
||||
return float(np.sqrt(np.sum(np.power((p1[0] - p2[0]), 2)))) |
||||
|
||||
|
||||
def calc_angle(p1: np.ndarray, vertex: np.ndarray, p2: np.ndarray) -> float: |
||||
x1, y1 = p1[0] |
||||
xv, yv = vertex[0] |
||||
x2, y2 = p2[0] |
||||
a = ((xv - x2) * (xv - x2) + (yv - y2) * (yv - y2))**0.5 |
||||
b = ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))**0.5 |
||||
c = ((x1 - xv) * (x1 - xv) + (y1 - yv) * (y1 - yv))**0.5 |
||||
return math.degrees(math.acos((b**2 - a**2 - c**2) / (-2 * a * c))) |
||||
|
||||
|
||||
def calc_azimuth(p1: np.ndarray, p2: np.ndarray) -> float: |
||||
x1, y1 = p1[0] |
||||
x2, y2 = p2[0] |
||||
if y1 == y2: |
||||
return 0.0 |
||||
if x1 == x2: |
||||
return 90.0 |
||||
elif x1 < x2: |
||||
if y1 < y2: |
||||
ang = math.atan((y2 - y1) / (x2 - x1)) |
||||
return math.degrees(ang) |
||||
else: |
||||
ang = math.atan((y1 - y2) / (x2 - x1)) |
||||
return 180 - math.degrees(ang) |
||||
else: # x1 > x2 |
||||
if y1 < y2: |
||||
ang = math.atan((y2 - y1) / (x1 - x2)) |
||||
return 180 - math.degrees(ang) |
||||
else: |
||||
ang = math.atan((y1 - y2) / (x1 - x2)) |
||||
return math.degrees(ang) |
||||
|
||||
|
||||
def rotation(point: np.ndarray, center: np.ndarray, angle: float) -> np.ndarray: |
||||
if angle == 0: |
||||
return point |
||||
x, y = point[0] |
||||
cx, cy = center[0] |
||||
radian = math.radians(abs(angle)) |
||||
if angle > 0: # clockwise |
||||
rx = (x - cx) * math.cos(radian) - (y - cy) * math.sin(radian) + cx |
||||
ry = (x - cx) * math.sin(radian) + (y - cy) * math.cos(radian) + cy |
||||
else: |
||||
rx = (x - cx) * math.cos(radian) + (y - cy) * math.sin(radian) + cx |
||||
ry = (y - cy) * math.cos(radian) - (x - cx) * math.sin(radian) + cy |
||||
return np.array([[rx, ry]]) |
||||
|
||||
|
||||
def line(p1, p2): |
||||
A = (p1[1] - p2[1]) |
||||
B = (p2[0] - p1[0]) |
||||
C = (p1[0] * p2[1] - p2[0] * p1[1]) |
||||
return A, B, -C |
||||
|
||||
|
||||
def intersection(L1, L2): |
||||
D = L1[0] * L2[1] - L1[1] * L2[0] |
||||
Dx = L1[2] * L2[1] - L1[1] * L2[2] |
||||
Dy = L1[0] * L2[2] - L1[2] * L2[0] |
||||
if D != 0: |
||||
x = Dx / D |
||||
y = Dy / D |
||||
return np.array([[x, y]]) |
||||
else: |
||||
return None |
||||
|
||||
|
||||
def calc_distance_between_lines(L1, L2): |
||||
eps = 1e-16 |
||||
A1, _, C1 = L1 |
||||
A2, B2, C2 = L2 |
||||
new_C1 = C1 / (A1 + eps) |
||||
new_A2 = 1 |
||||
new_B2 = B2 / (A2 + eps) |
||||
new_C2 = C2 / (A2 + eps) |
||||
dist = (np.abs(new_C1 - new_C2)) / ( |
||||
np.sqrt(new_A2 * new_A2 + new_B2 * new_B2) + eps) |
||||
return dist |
||||
|
||||
|
||||
def calc_project_in_line(point, line_point1, line_point2): |
||||
eps = 1e-16 |
||||
m, n = point |
||||
x1, y1 = line_point1 |
||||
x2, y2 = line_point2 |
||||
F = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) |
||||
x = (m * (x2 - x1) * (x2 - x1) + n * (y2 - y1) * (x2 - x1) + |
||||
(x1 * y2 - x2 * y1) * (y2 - y1)) / (F + eps) |
||||
y = (m * (x2 - x1) * (y2 - y1) + n * (y2 - y1) * (y2 - y1) + |
||||
(x2 * y1 - x1 * y2) * (x2 - x1)) / (F + eps) |
||||
return np.array([[x, y]]) |
Loading…
Reference in new issue