diff --git a/paddlers/models/cd/models/__init__.py b/paddlers/models/cd/models/__init__.py index e4ba507..a6b3f5a 100644 --- a/paddlers/models/cd/models/__init__.py +++ b/paddlers/models/cd/models/__init__.py @@ -15,4 +15,5 @@ from .cdnet import CDNet from .unet_ef import UNetEarlyFusion from .unet_siamconc import UNetSiamConc -from .unet_siamdiff import UNetSiamDiff \ No newline at end of file +from .unet_siamdiff import UNetSiamDiff +from .stanet import STANet \ No newline at end of file diff --git a/paddlers/models/cd/models/backbones/__init__.py b/paddlers/models/cd/models/backbones/__init__.py new file mode 100644 index 0000000..eeae9aa --- /dev/null +++ b/paddlers/models/cd/models/backbones/__init__.py @@ -0,0 +1,13 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. \ No newline at end of file diff --git a/paddlers/models/cd/models/backbones/resnet.py b/paddlers/models/cd/models/backbones/resnet.py new file mode 100644 index 0000000..b5bb823 --- /dev/null +++ b/paddlers/models/cd/models/backbones/resnet.py @@ -0,0 +1,358 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Adapted from https://github.com/PaddlePaddle/Paddle/blob/release/2.2/python/paddle/vision/models/resnet.py +## Original head information +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import division +from __future__ import print_function + +import paddle +import paddle.nn as nn + +from paddle.utils.download import get_weights_path_from_url + +__all__ = [] + +model_urls = { + 'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams', + 'cf548f46534aa3560945be4b95cd11c4'), + 'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams', + '8d2275cf8706028345f78ac0e1d31969'), + 'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams', + 'ca6f485ee1ab0492d38f323885b0ad80'), + 'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams', + '02f35f034ca3858e1e54d4036443c92d'), + 'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams', + '7ad16a2f1e7333859ff986138630fd7a'), +} + + +class BasicBlock(nn.Layer): + expansion = 1 + + def __init__(self, + inplanes, + planes, + stride=1, + downsample=None, + groups=1, + base_width=64, + dilation=1, + norm_layer=None): + super(BasicBlock, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2D + + if dilation > 1: + raise NotImplementedError( + "Dilation > 1 not supported in BasicBlock") + + self.conv1 = nn.Conv2D( + inplanes, planes, 3, padding=1, stride=stride, bias_attr=False) + self.bn1 = norm_layer(planes) + self.relu = nn.ReLU() + self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False) + self.bn2 = norm_layer(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class BottleneckBlock(nn.Layer): + + expansion = 4 + + def __init__(self, + inplanes, + planes, + stride=1, + downsample=None, + groups=1, + base_width=64, + dilation=1, + norm_layer=None): + super(BottleneckBlock, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2D + width = int(planes * (base_width / 64.)) * groups + + self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False) + self.bn1 = norm_layer(width) + + self.conv2 = nn.Conv2D( + width, + width, + 3, + padding=dilation, + stride=stride, + groups=groups, + dilation=dilation, + bias_attr=False) + self.bn2 = norm_layer(width) + + self.conv3 = nn.Conv2D( + width, planes * self.expansion, 1, bias_attr=False) + self.bn3 = norm_layer(planes * self.expansion) + self.relu = nn.ReLU() + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class ResNet(nn.Layer): + """ResNet model from + `"Deep Residual Learning for Image Recognition" `_ + Args: + Block (BasicBlock|BottleneckBlock): block module of model. + depth (int): layers of resnet, default: 50. + num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer + will not be defined. Default: 1000. + with_pool (bool): use pool before the last fc layer or not. Default: True. + Examples: + .. code-block:: python + from paddle.vision.models import ResNet + from paddle.vision.models.resnet import BottleneckBlock, BasicBlock + resnet50 = ResNet(BottleneckBlock, 50) + resnet18 = ResNet(BasicBlock, 18) + """ + + def __init__(self, block, depth, num_classes=1000, with_pool=True, strides=(1,1,2,2,2), norm_layer=None): + super(ResNet, self).__init__() + layer_cfg = { + 18: [2, 2, 2, 2], + 34: [3, 4, 6, 3], + 50: [3, 4, 6, 3], + 101: [3, 4, 23, 3], + 152: [3, 8, 36, 3] + } + layers = layer_cfg[depth] + self.num_classes = num_classes + self.with_pool = with_pool + self._norm_layer = nn.BatchNorm2D if norm_layer is None else norm_layer + + self.inplanes = 64 + self.dilation = 1 + + self.conv1 = nn.Conv2D( + 3, + self.inplanes, + kernel_size=7, + stride=strides[0], + padding=3, + bias_attr=False) + self.bn1 = self._norm_layer(self.inplanes) + self.relu = nn.ReLU() + self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[1]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[2]) + self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[3]) + self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[4]) + if with_pool: + self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) + + if num_classes > 0: + self.fc = nn.Linear(512 * block.expansion, num_classes) + + def _make_layer(self, block, planes, blocks, stride=1, dilate=False): + norm_layer = self._norm_layer + downsample = None + previous_dilation = self.dilation + if dilate: + self.dilation *= stride + stride = 1 + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2D( + self.inplanes, + planes * block.expansion, + 1, + stride=stride, + bias_attr=False), + norm_layer(planes * block.expansion), ) + + layers = [] + layers.append( + block(self.inplanes, planes, stride, downsample, 1, 64, + previous_dilation, norm_layer)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append(block(self.inplanes, planes, norm_layer=norm_layer)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + if self.with_pool: + x = self.avgpool(x) + + if self.num_classes > 0: + x = paddle.flatten(x, 1) + x = self.fc(x) + + return x + + +def _resnet(arch, Block, depth, pretrained, **kwargs): + model = ResNet(Block, depth, **kwargs) + if pretrained: + assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( + arch) + weight_path = get_weights_path_from_url(model_urls[arch][0], + model_urls[arch][1]) + + param = paddle.load(weight_path) + model.set_dict(param) + + return model + + +def resnet18(pretrained=False, **kwargs): + """ResNet 18-layer model + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + Examples: + .. code-block:: python + from paddle.vision.models import resnet18 + # build model + model = resnet18() + # build model and load imagenet pretrained weight + # model = resnet18(pretrained=True) + """ + return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs) + + +def resnet34(pretrained=False, **kwargs): + """ResNet 34-layer model + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + + Examples: + .. code-block:: python + from paddle.vision.models import resnet34 + # build model + model = resnet34() + # build model and load imagenet pretrained weight + # model = resnet34(pretrained=True) + """ + return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs) + + +def resnet50(pretrained=False, **kwargs): + """ResNet 50-layer model + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + Examples: + .. code-block:: python + from paddle.vision.models import resnet50 + # build model + model = resnet50() + # build model and load imagenet pretrained weight + # model = resnet50(pretrained=True) + """ + return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs) + + +def resnet101(pretrained=False, **kwargs): + """ResNet 101-layer model + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + Examples: + .. code-block:: python + from paddle.vision.models import resnet101 + # build model + model = resnet101() + # build model and load imagenet pretrained weight + # model = resnet101(pretrained=True) + """ + return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs) + + +def resnet152(pretrained=False, **kwargs): + """ResNet 152-layer model + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + Examples: + .. code-block:: python + from paddle.vision.models import resnet152 + # build model + model = resnet152() + # build model and load imagenet pretrained weight + # model = resnet152(pretrained=True) + """ + return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs) \ No newline at end of file diff --git a/paddlers/models/cd/models/layers/blocks.py b/paddlers/models/cd/models/layers/blocks.py index 610dc07..af0d774 100644 --- a/paddlers/models/cd/models/layers/blocks.py +++ b/paddlers/models/cd/models/layers/blocks.py @@ -19,7 +19,8 @@ __all__ = [ 'BasicConv', 'Conv1x1', 'Conv3x3', 'Conv7x7', 'MaxPool2x2', 'MaxUnPool2x2', 'ConvTransposed3x3', - 'Identity' + 'Identity', + 'get_norm_layer', 'get_act_layer' ] diff --git a/paddlers/models/cd/models/stanet.py b/paddlers/models/cd/models/stanet.py new file mode 100644 index 0000000..cfde51f --- /dev/null +++ b/paddlers/models/cd/models/stanet.py @@ -0,0 +1,297 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle +import paddle.nn as nn +import paddle.nn.functional as F + + +from .backbones import resnet +from .layers import Conv1x1, Conv3x3, get_norm_layer, Identity +from .param_init import KaimingInitMixin + + +class STANet(nn.Layer): + """ + The STANet implementation based on PaddlePaddle. + + The original article refers to + H. Chen and Z. Shi, "A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection" + (https://www.mdpi.com/2072-4292/12/10/1662) + + Note that this implementation differs from the original work in two aspects: + 1. We do not use multiple dilation rates in layer 4 of the ResNet backbone. + 2. A classification head is used in place of the original metric learning-based head to stablize the training process. + + Args: + in_channels (int): The number of bands of the input images. + num_classes (int): The number of target classes. + att_type (str, optional): The attention module used in the model. Options are 'PAM' and 'BAM'. Default: 'BAM'. + ds_factor (int, optional): The downsampling factor of the attention modules. When `ds_factor` is set to values + greater than 1, the input features will first be processed by an average pooling layer with the kernel size of + `ds_factor`, before being used to calculate the attention scores. Default: 1. + + Raises: + ValueError: When `att_type` has an illeagal value (unsupported attention type). + """ + def __init__( + self, + in_channels, + num_classes, + att_type='BAM', + ds_factor=1 + ): + super().__init__() + + WIDTH = 64 + + self.extract = build_feat_extractor(in_ch=in_channels, width=WIDTH) + self.attend = build_sta_module(in_ch=WIDTH, att_type=att_type, ds=ds_factor) + self.conv_out = nn.Sequential( + Conv3x3(WIDTH, WIDTH, norm=True, act=True), + Conv3x3(WIDTH, num_classes) + ) + + self.init_weight() + + def forward(self, t1, t2): + f1 = self.extract(t1) + f2 = self.extract(t2) + + f1, f2 = self.attend(f1, f2) + + y = paddle.abs(f1- f2) + y = F.interpolate(y, size=t1.shape[2:], mode='bilinear', align_corners=True) + + pred = self.conv_out(y) + return pred, + + def init_weight(self): + # Do nothing here as the encoder and decoder weights have already been initialized. + # Note however that currently self.attend and self.conv_out use the default initilization method. + pass + + +def build_feat_extractor(in_ch, width): + return nn.Sequential( + Backbone(in_ch, 'resnet18'), + Decoder(width) + ) + + +def build_sta_module(in_ch, att_type, ds): + if att_type == 'BAM': + return Attention(BAM(in_ch, ds)) + elif att_type == 'PAM': + return Attention(PAM(in_ch, ds)) + else: + raise ValueError + + +class Backbone(nn.Layer, KaimingInitMixin): + def __init__(self, in_ch, arch, pretrained=True, strides=(2,1,2,2,2)): + super().__init__() + + if arch == 'resnet18': + self.resnet = resnet.resnet18(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) + elif arch == 'resnet34': + self.resnet = resnet.resnet34(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) + elif arch == 'resnet50': + self.resnet = resnet.resnet50(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) + else: + raise ValueError + + self._trim_resnet() + + if in_ch != 3: + self.resnet.conv1 = nn.Conv2D( + in_ch, + 64, + kernel_size=7, + stride=strides[0], + padding=3, + bias_attr=False + ) + + if not pretrained: + self.init_weight() + + def forward(self, x): + x = self.resnet.conv1(x) + x = self.resnet.bn1(x) + x = self.resnet.relu(x) + x = self.resnet.maxpool(x) + + x1 = self.resnet.layer1(x) + x2 = self.resnet.layer2(x1) + x3 = self.resnet.layer3(x2) + x4 = self.resnet.layer4(x3) + + return x1, x2, x3, x4 + + def _trim_resnet(self): + self.resnet.avgpool = Identity() + self.resnet.fc = Identity() + + +class Decoder(nn.Layer, KaimingInitMixin): + def __init__(self, f_ch): + super().__init__() + self.dr1 = Conv1x1(64, 96, norm=True, act=True) + self.dr2 = Conv1x1(128, 96, norm=True, act=True) + self.dr3 = Conv1x1(256, 96, norm=True, act=True) + self.dr4 = Conv1x1(512, 96, norm=True, act=True) + self.conv_out = nn.Sequential( + Conv3x3(384, 256, norm=True, act=True), + nn.Dropout(0.5), + Conv1x1(256, f_ch, norm=True, act=True) + ) + + self.init_weight() + + def forward(self, feats): + f1 = self.dr1(feats[0]) + f2 = self.dr2(feats[1]) + f3 = self.dr3(feats[2]) + f4 = self.dr4(feats[3]) + + f2 = F.interpolate(f2, size=f1.shape[2:], mode='bilinear', align_corners=True) + f3 = F.interpolate(f3, size=f1.shape[2:], mode='bilinear', align_corners=True) + f4 = F.interpolate(f4, size=f1.shape[2:], mode='bilinear', align_corners=True) + + x = paddle.concat([f1, f2, f3, f4], axis=1) + y = self.conv_out(x) + + return y + + +class BAM(nn.Layer): + def __init__(self, in_ch, ds): + super().__init__() + + self.ds = ds + self.pool = nn.AvgPool2D(self.ds) + + self.val_ch = in_ch + self.key_ch = in_ch // 8 + self.conv_q = Conv1x1(in_ch, self.key_ch) + self.conv_k = Conv1x1(in_ch, self.key_ch) + self.conv_v = Conv1x1(in_ch, self.val_ch) + + self.softmax = nn.Softmax(axis=-1) + + def forward(self, x): + x = x.flatten(-2) + x_rs = self.pool(x) + + b, c, h, w = x_rs.shape + query = self.conv_q(x_rs).reshape((b,-1,h*w)).transpose((0,2,1)) + key = self.conv_k(x_rs).reshape((b,-1,h*w)) + energy = paddle.bmm(query, key) + energy = (self.key_ch**(-0.5)) * energy + + attention = self.softmax(energy) + + value = self.conv_v(x_rs).reshape((b,-1,w*h)) + + out = paddle.bmm(value, attention.transpose((0,2,1))) + out = out.reshape((b,c,h,w)) + + out = F.interpolate(out, scale_factor=self.ds) + out = out + x + return out.reshape(out.shape[:-1]+[out.shape[-1]//2, 2]) + + +class PAMBlock(nn.Layer): + def __init__(self, in_ch, scale=1, ds=1): + super().__init__() + + self.scale = scale + self.ds = ds + self.pool = nn.AvgPool2D(self.ds) + + self.val_ch = in_ch + self.key_ch = in_ch // 8 + self.conv_q = Conv1x1(in_ch, self.key_ch, norm=True) + self.conv_k = Conv1x1(in_ch, self.key_ch, norm=True) + self.conv_v = Conv1x1(in_ch, self.val_ch) + + def forward(self, x): + x_rs = self.pool(x) + + # Get query, key, and value. + query = self.conv_q(x_rs) + key = self.conv_k(x_rs) + value = self.conv_v(x_rs) + + # Split the whole image into subregions. + b, c, h, w = x_rs.shape + query = self._split_subregions(query) + key = self._split_subregions(key) + value = self._split_subregions(value) + + # Perform subregion-wise attention. + out = self._attend(query, key, value) + + # Stack subregions to reconstruct the whole image. + out = self._recons_whole(out, b, c, h, w) + out = F.interpolate(out, scale_factor=self.ds) + return out + + def _attend(self, query, key, value): + energy = paddle.bmm(query.transpose((0,2,1)), key) # batch matrix multiplication + energy = (self.key_ch**(-0.5)) * energy + attention = F.softmax(energy, axis=-1) + out = paddle.bmm(value, attention.transpose((0,2,1))) + return out + + def _split_subregions(self, x): + b, c, h, w = x.shape + assert h % self.scale == 0 and w % self.scale == 0 + x = x.reshape((b, c, self.scale, h//self.scale, self.scale, w//self.scale)) + x = x.transpose((0,2,4,1,3,5)).reshape((b*self.scale*self.scale, c, -1)) + return x + + def _recons_whole(self, x, b, c, h, w): + x = x.reshape((b, self.scale, self.scale, c, h//self.scale, w//self.scale)) + x = x.transpose((0,3,1,4,2,5)).reshape((b, c, h, w)) + return x + + +class PAM(nn.Layer): + def __init__(self, in_ch, ds, scales=(1,2,4,8)): + super().__init__() + + self.stages = nn.LayerList([ + PAMBlock(in_ch, scale=s, ds=ds) + for s in scales + ]) + self.conv_out = Conv1x1(in_ch*len(scales), in_ch, bias=False) + + def forward(self, x): + x = x.flatten(-2) + res = [stage(x) for stage in self.stages] + out = self.conv_out(paddle.concat(res, axis=1)) + return out.reshape(out.shape[:-1]+[out.shape[-1]//2, 2]) + + +class Attention(nn.Layer): + def __init__(self, att): + super().__init__() + self.att = att + + def forward(self, x1, x2): + x = paddle.stack([x1, x2], axis=-1) + y = self.att(x) + return y[...,0], y[...,1] \ No newline at end of file diff --git a/paddlers/tasks/changedetector.py b/paddlers/tasks/changedetector.py index e01c9f8..bd39cec 100644 --- a/paddlers/tasks/changedetector.py +++ b/paddlers/tasks/changedetector.py @@ -31,7 +31,7 @@ from paddlers.utils.checkpoint import seg_pretrain_weights_dict from paddlers.transforms import ImgDecoder, Resize import paddlers.models.cd as cd -__all__ = ["CDNet", "UNetEarlyFusion", "UNetSiamConc", "UNetSiamDiff"] +__all__ = ["CDNet", "UNetEarlyFusion", "UNetSiamConc", "UNetSiamDiff", "STANet"] class BaseChangeDetector(BaseModel): @@ -716,4 +716,24 @@ class UNetSiamDiff(BaseChangeDetector): model_name='UNetSiamDiff', num_classes=num_classes, use_mixed_loss=use_mixed_loss, + **params) + + +class STANet(BaseChangeDetector): + def __init__(self, + num_classes=2, + use_mixed_loss=False, + in_channels=3, + att_type='BAM', + ds_factor=1, + **params): + params.update({ + 'in_channels': in_channels, + 'att_type': att_type, + 'ds_factor': ds_factor + }) + super(STANet, self).__init__( + model_name='STANet', + num_classes=num_classes, + use_mixed_loss=use_mixed_loss, **params) \ No newline at end of file