parent
6932bf6e16
commit
91c64d923a
6 changed files with 693 additions and 3 deletions
@ -0,0 +1,13 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
@ -0,0 +1,358 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
# Adapted from https://github.com/PaddlePaddle/Paddle/blob/release/2.2/python/paddle/vision/models/resnet.py |
||||
## Original head information |
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from __future__ import division |
||||
from __future__ import print_function |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
|
||||
from paddle.utils.download import get_weights_path_from_url |
||||
|
||||
__all__ = [] |
||||
|
||||
model_urls = { |
||||
'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams', |
||||
'cf548f46534aa3560945be4b95cd11c4'), |
||||
'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams', |
||||
'8d2275cf8706028345f78ac0e1d31969'), |
||||
'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams', |
||||
'ca6f485ee1ab0492d38f323885b0ad80'), |
||||
'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams', |
||||
'02f35f034ca3858e1e54d4036443c92d'), |
||||
'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams', |
||||
'7ad16a2f1e7333859ff986138630fd7a'), |
||||
} |
||||
|
||||
|
||||
class BasicBlock(nn.Layer): |
||||
expansion = 1 |
||||
|
||||
def __init__(self, |
||||
inplanes, |
||||
planes, |
||||
stride=1, |
||||
downsample=None, |
||||
groups=1, |
||||
base_width=64, |
||||
dilation=1, |
||||
norm_layer=None): |
||||
super(BasicBlock, self).__init__() |
||||
if norm_layer is None: |
||||
norm_layer = nn.BatchNorm2D |
||||
|
||||
if dilation > 1: |
||||
raise NotImplementedError( |
||||
"Dilation > 1 not supported in BasicBlock") |
||||
|
||||
self.conv1 = nn.Conv2D( |
||||
inplanes, planes, 3, padding=1, stride=stride, bias_attr=False) |
||||
self.bn1 = norm_layer(planes) |
||||
self.relu = nn.ReLU() |
||||
self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False) |
||||
self.bn2 = norm_layer(planes) |
||||
self.downsample = downsample |
||||
self.stride = stride |
||||
|
||||
def forward(self, x): |
||||
identity = x |
||||
|
||||
out = self.conv1(x) |
||||
out = self.bn1(out) |
||||
out = self.relu(out) |
||||
|
||||
out = self.conv2(out) |
||||
out = self.bn2(out) |
||||
|
||||
if self.downsample is not None: |
||||
identity = self.downsample(x) |
||||
|
||||
out += identity |
||||
out = self.relu(out) |
||||
|
||||
return out |
||||
|
||||
|
||||
class BottleneckBlock(nn.Layer): |
||||
|
||||
expansion = 4 |
||||
|
||||
def __init__(self, |
||||
inplanes, |
||||
planes, |
||||
stride=1, |
||||
downsample=None, |
||||
groups=1, |
||||
base_width=64, |
||||
dilation=1, |
||||
norm_layer=None): |
||||
super(BottleneckBlock, self).__init__() |
||||
if norm_layer is None: |
||||
norm_layer = nn.BatchNorm2D |
||||
width = int(planes * (base_width / 64.)) * groups |
||||
|
||||
self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False) |
||||
self.bn1 = norm_layer(width) |
||||
|
||||
self.conv2 = nn.Conv2D( |
||||
width, |
||||
width, |
||||
3, |
||||
padding=dilation, |
||||
stride=stride, |
||||
groups=groups, |
||||
dilation=dilation, |
||||
bias_attr=False) |
||||
self.bn2 = norm_layer(width) |
||||
|
||||
self.conv3 = nn.Conv2D( |
||||
width, planes * self.expansion, 1, bias_attr=False) |
||||
self.bn3 = norm_layer(planes * self.expansion) |
||||
self.relu = nn.ReLU() |
||||
self.downsample = downsample |
||||
self.stride = stride |
||||
|
||||
def forward(self, x): |
||||
identity = x |
||||
|
||||
out = self.conv1(x) |
||||
out = self.bn1(out) |
||||
out = self.relu(out) |
||||
|
||||
out = self.conv2(out) |
||||
out = self.bn2(out) |
||||
out = self.relu(out) |
||||
|
||||
out = self.conv3(out) |
||||
out = self.bn3(out) |
||||
|
||||
if self.downsample is not None: |
||||
identity = self.downsample(x) |
||||
|
||||
out += identity |
||||
out = self.relu(out) |
||||
|
||||
return out |
||||
|
||||
|
||||
class ResNet(nn.Layer): |
||||
"""ResNet model from |
||||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
||||
Args: |
||||
Block (BasicBlock|BottleneckBlock): block module of model. |
||||
depth (int): layers of resnet, default: 50. |
||||
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer |
||||
will not be defined. Default: 1000. |
||||
with_pool (bool): use pool before the last fc layer or not. Default: True. |
||||
Examples: |
||||
.. code-block:: python |
||||
from paddle.vision.models import ResNet |
||||
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock |
||||
resnet50 = ResNet(BottleneckBlock, 50) |
||||
resnet18 = ResNet(BasicBlock, 18) |
||||
""" |
||||
|
||||
def __init__(self, block, depth, num_classes=1000, with_pool=True, strides=(1,1,2,2,2), norm_layer=None): |
||||
super(ResNet, self).__init__() |
||||
layer_cfg = { |
||||
18: [2, 2, 2, 2], |
||||
34: [3, 4, 6, 3], |
||||
50: [3, 4, 6, 3], |
||||
101: [3, 4, 23, 3], |
||||
152: [3, 8, 36, 3] |
||||
} |
||||
layers = layer_cfg[depth] |
||||
self.num_classes = num_classes |
||||
self.with_pool = with_pool |
||||
self._norm_layer = nn.BatchNorm2D if norm_layer is None else norm_layer |
||||
|
||||
self.inplanes = 64 |
||||
self.dilation = 1 |
||||
|
||||
self.conv1 = nn.Conv2D( |
||||
3, |
||||
self.inplanes, |
||||
kernel_size=7, |
||||
stride=strides[0], |
||||
padding=3, |
||||
bias_attr=False) |
||||
self.bn1 = self._norm_layer(self.inplanes) |
||||
self.relu = nn.ReLU() |
||||
self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) |
||||
self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[1]) |
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[2]) |
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[3]) |
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[4]) |
||||
if with_pool: |
||||
self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) |
||||
|
||||
if num_classes > 0: |
||||
self.fc = nn.Linear(512 * block.expansion, num_classes) |
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
||||
norm_layer = self._norm_layer |
||||
downsample = None |
||||
previous_dilation = self.dilation |
||||
if dilate: |
||||
self.dilation *= stride |
||||
stride = 1 |
||||
if stride != 1 or self.inplanes != planes * block.expansion: |
||||
downsample = nn.Sequential( |
||||
nn.Conv2D( |
||||
self.inplanes, |
||||
planes * block.expansion, |
||||
1, |
||||
stride=stride, |
||||
bias_attr=False), |
||||
norm_layer(planes * block.expansion), ) |
||||
|
||||
layers = [] |
||||
layers.append( |
||||
block(self.inplanes, planes, stride, downsample, 1, 64, |
||||
previous_dilation, norm_layer)) |
||||
self.inplanes = planes * block.expansion |
||||
for _ in range(1, blocks): |
||||
layers.append(block(self.inplanes, planes, norm_layer=norm_layer)) |
||||
|
||||
return nn.Sequential(*layers) |
||||
|
||||
def forward(self, x): |
||||
x = self.conv1(x) |
||||
x = self.bn1(x) |
||||
x = self.relu(x) |
||||
x = self.maxpool(x) |
||||
x = self.layer1(x) |
||||
x = self.layer2(x) |
||||
x = self.layer3(x) |
||||
x = self.layer4(x) |
||||
|
||||
if self.with_pool: |
||||
x = self.avgpool(x) |
||||
|
||||
if self.num_classes > 0: |
||||
x = paddle.flatten(x, 1) |
||||
x = self.fc(x) |
||||
|
||||
return x |
||||
|
||||
|
||||
def _resnet(arch, Block, depth, pretrained, **kwargs): |
||||
model = ResNet(Block, depth, **kwargs) |
||||
if pretrained: |
||||
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( |
||||
arch) |
||||
weight_path = get_weights_path_from_url(model_urls[arch][0], |
||||
model_urls[arch][1]) |
||||
|
||||
param = paddle.load(weight_path) |
||||
model.set_dict(param) |
||||
|
||||
return model |
||||
|
||||
|
||||
def resnet18(pretrained=False, **kwargs): |
||||
"""ResNet 18-layer model |
||||
|
||||
Args: |
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
||||
Examples: |
||||
.. code-block:: python |
||||
from paddle.vision.models import resnet18 |
||||
# build model |
||||
model = resnet18() |
||||
# build model and load imagenet pretrained weight |
||||
# model = resnet18(pretrained=True) |
||||
""" |
||||
return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs) |
||||
|
||||
|
||||
def resnet34(pretrained=False, **kwargs): |
||||
"""ResNet 34-layer model |
||||
|
||||
Args: |
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
||||
|
||||
Examples: |
||||
.. code-block:: python |
||||
from paddle.vision.models import resnet34 |
||||
# build model |
||||
model = resnet34() |
||||
# build model and load imagenet pretrained weight |
||||
# model = resnet34(pretrained=True) |
||||
""" |
||||
return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs) |
||||
|
||||
|
||||
def resnet50(pretrained=False, **kwargs): |
||||
"""ResNet 50-layer model |
||||
|
||||
Args: |
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
||||
Examples: |
||||
.. code-block:: python |
||||
from paddle.vision.models import resnet50 |
||||
# build model |
||||
model = resnet50() |
||||
# build model and load imagenet pretrained weight |
||||
# model = resnet50(pretrained=True) |
||||
""" |
||||
return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs) |
||||
|
||||
|
||||
def resnet101(pretrained=False, **kwargs): |
||||
"""ResNet 101-layer model |
||||
|
||||
Args: |
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
||||
Examples: |
||||
.. code-block:: python |
||||
from paddle.vision.models import resnet101 |
||||
# build model |
||||
model = resnet101() |
||||
# build model and load imagenet pretrained weight |
||||
# model = resnet101(pretrained=True) |
||||
""" |
||||
return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs) |
||||
|
||||
|
||||
def resnet152(pretrained=False, **kwargs): |
||||
"""ResNet 152-layer model |
||||
|
||||
Args: |
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet |
||||
Examples: |
||||
.. code-block:: python |
||||
from paddle.vision.models import resnet152 |
||||
# build model |
||||
model = resnet152() |
||||
# build model and load imagenet pretrained weight |
||||
# model = resnet152(pretrained=True) |
||||
""" |
||||
return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs) |
@ -0,0 +1,297 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
import paddle.nn.functional as F |
||||
|
||||
|
||||
from .backbones import resnet |
||||
from .layers import Conv1x1, Conv3x3, get_norm_layer, Identity |
||||
from .param_init import KaimingInitMixin |
||||
|
||||
|
||||
class STANet(nn.Layer): |
||||
""" |
||||
The STANet implementation based on PaddlePaddle. |
||||
|
||||
The original article refers to |
||||
H. Chen and Z. Shi, "A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection" |
||||
(https://www.mdpi.com/2072-4292/12/10/1662) |
||||
|
||||
Note that this implementation differs from the original work in two aspects: |
||||
1. We do not use multiple dilation rates in layer 4 of the ResNet backbone. |
||||
2. A classification head is used in place of the original metric learning-based head to stablize the training process. |
||||
|
||||
Args: |
||||
in_channels (int): The number of bands of the input images. |
||||
num_classes (int): The number of target classes. |
||||
att_type (str, optional): The attention module used in the model. Options are 'PAM' and 'BAM'. Default: 'BAM'. |
||||
ds_factor (int, optional): The downsampling factor of the attention modules. When `ds_factor` is set to values |
||||
greater than 1, the input features will first be processed by an average pooling layer with the kernel size of |
||||
`ds_factor`, before being used to calculate the attention scores. Default: 1. |
||||
|
||||
Raises: |
||||
ValueError: When `att_type` has an illeagal value (unsupported attention type). |
||||
""" |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
num_classes, |
||||
att_type='BAM', |
||||
ds_factor=1 |
||||
): |
||||
super().__init__() |
||||
|
||||
WIDTH = 64 |
||||
|
||||
self.extract = build_feat_extractor(in_ch=in_channels, width=WIDTH) |
||||
self.attend = build_sta_module(in_ch=WIDTH, att_type=att_type, ds=ds_factor) |
||||
self.conv_out = nn.Sequential( |
||||
Conv3x3(WIDTH, WIDTH, norm=True, act=True), |
||||
Conv3x3(WIDTH, num_classes) |
||||
) |
||||
|
||||
self.init_weight() |
||||
|
||||
def forward(self, t1, t2): |
||||
f1 = self.extract(t1) |
||||
f2 = self.extract(t2) |
||||
|
||||
f1, f2 = self.attend(f1, f2) |
||||
|
||||
y = paddle.abs(f1- f2) |
||||
y = F.interpolate(y, size=t1.shape[2:], mode='bilinear', align_corners=True) |
||||
|
||||
pred = self.conv_out(y) |
||||
return pred, |
||||
|
||||
def init_weight(self): |
||||
# Do nothing here as the encoder and decoder weights have already been initialized. |
||||
# Note however that currently self.attend and self.conv_out use the default initilization method. |
||||
pass |
||||
|
||||
|
||||
def build_feat_extractor(in_ch, width): |
||||
return nn.Sequential( |
||||
Backbone(in_ch, 'resnet18'), |
||||
Decoder(width) |
||||
) |
||||
|
||||
|
||||
def build_sta_module(in_ch, att_type, ds): |
||||
if att_type == 'BAM': |
||||
return Attention(BAM(in_ch, ds)) |
||||
elif att_type == 'PAM': |
||||
return Attention(PAM(in_ch, ds)) |
||||
else: |
||||
raise ValueError |
||||
|
||||
|
||||
class Backbone(nn.Layer, KaimingInitMixin): |
||||
def __init__(self, in_ch, arch, pretrained=True, strides=(2,1,2,2,2)): |
||||
super().__init__() |
||||
|
||||
if arch == 'resnet18': |
||||
self.resnet = resnet.resnet18(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) |
||||
elif arch == 'resnet34': |
||||
self.resnet = resnet.resnet34(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) |
||||
elif arch == 'resnet50': |
||||
self.resnet = resnet.resnet50(pretrained=pretrained, strides=strides, norm_layer=get_norm_layer()) |
||||
else: |
||||
raise ValueError |
||||
|
||||
self._trim_resnet() |
||||
|
||||
if in_ch != 3: |
||||
self.resnet.conv1 = nn.Conv2D( |
||||
in_ch, |
||||
64, |
||||
kernel_size=7, |
||||
stride=strides[0], |
||||
padding=3, |
||||
bias_attr=False |
||||
) |
||||
|
||||
if not pretrained: |
||||
self.init_weight() |
||||
|
||||
def forward(self, x): |
||||
x = self.resnet.conv1(x) |
||||
x = self.resnet.bn1(x) |
||||
x = self.resnet.relu(x) |
||||
x = self.resnet.maxpool(x) |
||||
|
||||
x1 = self.resnet.layer1(x) |
||||
x2 = self.resnet.layer2(x1) |
||||
x3 = self.resnet.layer3(x2) |
||||
x4 = self.resnet.layer4(x3) |
||||
|
||||
return x1, x2, x3, x4 |
||||
|
||||
def _trim_resnet(self): |
||||
self.resnet.avgpool = Identity() |
||||
self.resnet.fc = Identity() |
||||
|
||||
|
||||
class Decoder(nn.Layer, KaimingInitMixin): |
||||
def __init__(self, f_ch): |
||||
super().__init__() |
||||
self.dr1 = Conv1x1(64, 96, norm=True, act=True) |
||||
self.dr2 = Conv1x1(128, 96, norm=True, act=True) |
||||
self.dr3 = Conv1x1(256, 96, norm=True, act=True) |
||||
self.dr4 = Conv1x1(512, 96, norm=True, act=True) |
||||
self.conv_out = nn.Sequential( |
||||
Conv3x3(384, 256, norm=True, act=True), |
||||
nn.Dropout(0.5), |
||||
Conv1x1(256, f_ch, norm=True, act=True) |
||||
) |
||||
|
||||
self.init_weight() |
||||
|
||||
def forward(self, feats): |
||||
f1 = self.dr1(feats[0]) |
||||
f2 = self.dr2(feats[1]) |
||||
f3 = self.dr3(feats[2]) |
||||
f4 = self.dr4(feats[3]) |
||||
|
||||
f2 = F.interpolate(f2, size=f1.shape[2:], mode='bilinear', align_corners=True) |
||||
f3 = F.interpolate(f3, size=f1.shape[2:], mode='bilinear', align_corners=True) |
||||
f4 = F.interpolate(f4, size=f1.shape[2:], mode='bilinear', align_corners=True) |
||||
|
||||
x = paddle.concat([f1, f2, f3, f4], axis=1) |
||||
y = self.conv_out(x) |
||||
|
||||
return y |
||||
|
||||
|
||||
class BAM(nn.Layer): |
||||
def __init__(self, in_ch, ds): |
||||
super().__init__() |
||||
|
||||
self.ds = ds |
||||
self.pool = nn.AvgPool2D(self.ds) |
||||
|
||||
self.val_ch = in_ch |
||||
self.key_ch = in_ch // 8 |
||||
self.conv_q = Conv1x1(in_ch, self.key_ch) |
||||
self.conv_k = Conv1x1(in_ch, self.key_ch) |
||||
self.conv_v = Conv1x1(in_ch, self.val_ch) |
||||
|
||||
self.softmax = nn.Softmax(axis=-1) |
||||
|
||||
def forward(self, x): |
||||
x = x.flatten(-2) |
||||
x_rs = self.pool(x) |
||||
|
||||
b, c, h, w = x_rs.shape |
||||
query = self.conv_q(x_rs).reshape((b,-1,h*w)).transpose((0,2,1)) |
||||
key = self.conv_k(x_rs).reshape((b,-1,h*w)) |
||||
energy = paddle.bmm(query, key) |
||||
energy = (self.key_ch**(-0.5)) * energy |
||||
|
||||
attention = self.softmax(energy) |
||||
|
||||
value = self.conv_v(x_rs).reshape((b,-1,w*h)) |
||||
|
||||
out = paddle.bmm(value, attention.transpose((0,2,1))) |
||||
out = out.reshape((b,c,h,w)) |
||||
|
||||
out = F.interpolate(out, scale_factor=self.ds) |
||||
out = out + x |
||||
return out.reshape(out.shape[:-1]+[out.shape[-1]//2, 2]) |
||||
|
||||
|
||||
class PAMBlock(nn.Layer): |
||||
def __init__(self, in_ch, scale=1, ds=1): |
||||
super().__init__() |
||||
|
||||
self.scale = scale |
||||
self.ds = ds |
||||
self.pool = nn.AvgPool2D(self.ds) |
||||
|
||||
self.val_ch = in_ch |
||||
self.key_ch = in_ch // 8 |
||||
self.conv_q = Conv1x1(in_ch, self.key_ch, norm=True) |
||||
self.conv_k = Conv1x1(in_ch, self.key_ch, norm=True) |
||||
self.conv_v = Conv1x1(in_ch, self.val_ch) |
||||
|
||||
def forward(self, x): |
||||
x_rs = self.pool(x) |
||||
|
||||
# Get query, key, and value. |
||||
query = self.conv_q(x_rs) |
||||
key = self.conv_k(x_rs) |
||||
value = self.conv_v(x_rs) |
||||
|
||||
# Split the whole image into subregions. |
||||
b, c, h, w = x_rs.shape |
||||
query = self._split_subregions(query) |
||||
key = self._split_subregions(key) |
||||
value = self._split_subregions(value) |
||||
|
||||
# Perform subregion-wise attention. |
||||
out = self._attend(query, key, value) |
||||
|
||||
# Stack subregions to reconstruct the whole image. |
||||
out = self._recons_whole(out, b, c, h, w) |
||||
out = F.interpolate(out, scale_factor=self.ds) |
||||
return out |
||||
|
||||
def _attend(self, query, key, value): |
||||
energy = paddle.bmm(query.transpose((0,2,1)), key) # batch matrix multiplication |
||||
energy = (self.key_ch**(-0.5)) * energy |
||||
attention = F.softmax(energy, axis=-1) |
||||
out = paddle.bmm(value, attention.transpose((0,2,1))) |
||||
return out |
||||
|
||||
def _split_subregions(self, x): |
||||
b, c, h, w = x.shape |
||||
assert h % self.scale == 0 and w % self.scale == 0 |
||||
x = x.reshape((b, c, self.scale, h//self.scale, self.scale, w//self.scale)) |
||||
x = x.transpose((0,2,4,1,3,5)).reshape((b*self.scale*self.scale, c, -1)) |
||||
return x |
||||
|
||||
def _recons_whole(self, x, b, c, h, w): |
||||
x = x.reshape((b, self.scale, self.scale, c, h//self.scale, w//self.scale)) |
||||
x = x.transpose((0,3,1,4,2,5)).reshape((b, c, h, w)) |
||||
return x |
||||
|
||||
|
||||
class PAM(nn.Layer): |
||||
def __init__(self, in_ch, ds, scales=(1,2,4,8)): |
||||
super().__init__() |
||||
|
||||
self.stages = nn.LayerList([ |
||||
PAMBlock(in_ch, scale=s, ds=ds) |
||||
for s in scales |
||||
]) |
||||
self.conv_out = Conv1x1(in_ch*len(scales), in_ch, bias=False) |
||||
|
||||
def forward(self, x): |
||||
x = x.flatten(-2) |
||||
res = [stage(x) for stage in self.stages] |
||||
out = self.conv_out(paddle.concat(res, axis=1)) |
||||
return out.reshape(out.shape[:-1]+[out.shape[-1]//2, 2]) |
||||
|
||||
|
||||
class Attention(nn.Layer): |
||||
def __init__(self, att): |
||||
super().__init__() |
||||
self.att = att |
||||
|
||||
def forward(self, x1, x2): |
||||
x = paddle.stack([x1, x2], axis=-1) |
||||
y = self.att(x) |
||||
return y[...,0], y[...,1] |
Loading…
Reference in new issue