[Feature] Init add COCO datasets (#56)
parent
0728d38e21
commit
9084322f79
3 changed files with 375 additions and 0 deletions
Before Width: | Height: | Size: 311 KiB |
@ -0,0 +1,374 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from __future__ import absolute_import |
||||
import copy |
||||
import os |
||||
import os.path as osp |
||||
import random |
||||
import numpy as np |
||||
from collections import OrderedDict |
||||
from paddle.io import Dataset |
||||
from paddlers.utils import logging, get_num_workers, get_encoding, path_normalization, is_pic |
||||
from paddlers.transforms import ImgDecoder, MixupImage |
||||
from paddlers.tools import YOLOAnchorCluster |
||||
|
||||
|
||||
class COCODetection(Dataset): |
||||
"""读取COCO格式的检测数据集,并对样本进行相应的处理。 |
||||
|
||||
Args: |
||||
data_dir (str): 数据集所在的目录路径。 |
||||
image_dir (str): 描述数据集图片文件路径。 |
||||
anno_path (str): COCO标注文件路径。 |
||||
label_list (str): 描述数据集包含的类别信息文件路径。 |
||||
transforms (paddlers.det.transforms): 数据集中每个样本的预处理/增强算子。 |
||||
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据 |
||||
系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的 |
||||
一半。 |
||||
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 |
||||
allow_empty (bool): 是否加载负样本。默认为False。 |
||||
empty_ratio (float): 用于指定负样本占总样本数的比例。如果小于0或大于等于1,则保留全部的负样本。默认为1。 |
||||
""" |
||||
|
||||
def __init__(self, |
||||
data_dir, |
||||
image_dir, |
||||
anno_path, |
||||
label_list, |
||||
transforms=None, |
||||
num_workers='auto', |
||||
shuffle=False, |
||||
allow_empty=False, |
||||
empty_ratio=1.): |
||||
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot, |
||||
# or matplotlib.backends is imported for the first time |
||||
# pycocotools import matplotlib |
||||
import matplotlib |
||||
matplotlib.use('Agg') |
||||
from pycocotools.coco import COCO |
||||
super(COCODetection, self).__init__() |
||||
self.data_dir = data_dir |
||||
self.data_fields = None |
||||
self.transforms = copy.deepcopy(transforms) |
||||
self.num_max_boxes = 50 |
||||
|
||||
self.use_mix = False |
||||
if self.transforms is not None: |
||||
for op in self.transforms.transforms: |
||||
if isinstance(op, MixupImage): |
||||
self.mixup_op = copy.deepcopy(op) |
||||
self.use_mix = True |
||||
self.num_max_boxes *= 2 |
||||
break |
||||
|
||||
self.batch_transforms = None |
||||
self.num_workers = get_num_workers(num_workers) |
||||
self.shuffle = shuffle |
||||
self.allow_empty = allow_empty |
||||
self.empty_ratio = empty_ratio |
||||
self.file_list = list() |
||||
neg_file_list = list() |
||||
self.labels = list() |
||||
|
||||
annotations = dict() |
||||
annotations['images'] = list() |
||||
annotations['categories'] = list() |
||||
annotations['annotations'] = list() |
||||
|
||||
cname2cid = OrderedDict() |
||||
label_id = 0 |
||||
with open(label_list, 'r', encoding=get_encoding(label_list)) as f: |
||||
for line in f.readlines(): |
||||
cname2cid[line.strip()] = label_id |
||||
label_id += 1 |
||||
self.labels.append(line.strip()) |
||||
|
||||
for k, v in cname2cid.items(): |
||||
annotations['categories'].append({ |
||||
'supercategory': 'component', |
||||
'id': v + 1, |
||||
'name': k |
||||
}) |
||||
|
||||
anno_path = path_normalization(os.path.join(self.data_dir, anno_path)) |
||||
image_dir = path_normalization(os.path.join(self.data_dir, image_dir)) |
||||
|
||||
assert anno_path.endswith('.json'), \ |
||||
'invalid coco annotation file: ' + anno_path |
||||
from pycocotools.coco import COCO |
||||
coco = COCO(anno_path) |
||||
img_ids = coco.getImgIds() |
||||
img_ids.sort() |
||||
cat_ids = coco.getCatIds() |
||||
ct = 0 |
||||
|
||||
catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)}) |
||||
cname2cid = dict({ |
||||
coco.loadCats(catid)[0]['name']: clsid |
||||
for catid, clsid in catid2clsid.items() |
||||
}) |
||||
|
||||
for img_id in img_ids: |
||||
img_anno = coco.loadImgs([img_id])[0] |
||||
im_fname = img_anno['file_name'] |
||||
im_w = float(img_anno['width']) |
||||
im_h = float(img_anno['height']) |
||||
|
||||
im_path = os.path.join(image_dir, |
||||
im_fname) if image_dir else im_fname |
||||
if not os.path.exists(im_path): |
||||
logging.warning('Illegal image file: {}, and it will be ' |
||||
'ignored'.format(im_path)) |
||||
continue |
||||
|
||||
if im_w < 0 or im_h < 0: |
||||
logging.warning( |
||||
'Illegal width: {} or height: {} in annotation, ' |
||||
'and im_id: {} will be ignored'.format(im_w, im_h, img_id)) |
||||
continue |
||||
|
||||
im_info = { |
||||
'image': im_path, |
||||
'im_id': np.array([img_id]), |
||||
'image_shape': np.array( |
||||
[im_h, im_w], dtype=np.int32) |
||||
} |
||||
|
||||
ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False) |
||||
instances = coco.loadAnns(ins_anno_ids) |
||||
|
||||
is_crowds = [] |
||||
gt_classes = [] |
||||
gt_bboxs = [] |
||||
gt_scores = [] |
||||
difficults = [] |
||||
|
||||
for inst in instances: |
||||
# check gt bbox |
||||
if inst.get('ignore', False): |
||||
continue |
||||
if 'bbox' not in inst.keys(): |
||||
continue |
||||
else: |
||||
if not any(np.array(inst['bbox'])): |
||||
continue |
||||
|
||||
# read box |
||||
x1, y1, box_w, box_h = inst['bbox'] |
||||
x2 = x1 + box_w |
||||
y2 = y1 + box_h |
||||
eps = 1e-5 |
||||
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps: |
||||
inst['clean_bbox'] = [ |
||||
round(float(x), 3) for x in [x1, y1, x2, y2] |
||||
] |
||||
else: |
||||
logging.warning( |
||||
'Found an invalid bbox in annotations: im_id: {}, ' |
||||
'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format( |
||||
img_id, float(inst['area']), x1, y1, x2, y2)) |
||||
|
||||
is_crowds.append([inst['iscrowd']]) |
||||
gt_classes.append([inst['category_id']]) |
||||
gt_bboxs.append(inst['clean_bbox']) |
||||
gt_scores.append([1.]) |
||||
difficults.append([0]) |
||||
|
||||
annotations['annotations'].append({ |
||||
'iscrowd': inst['iscrowd'], |
||||
'image_id': int(inst['image_id']), |
||||
'bbox': inst['clean_bbox'], |
||||
'area': inst['area'], |
||||
'category_id': inst['category_id'], |
||||
'id': inst['id'], |
||||
'difficult': 0 |
||||
}) |
||||
|
||||
label_info = { |
||||
'is_crowd': np.array(is_crowds), |
||||
'gt_class': np.array(gt_classes), |
||||
'gt_bbox': np.array(gt_bboxs).astype(np.float32), |
||||
'gt_score': np.array(gt_scores).astype(np.float32), |
||||
'difficult': np.array(difficults), |
||||
} |
||||
|
||||
if label_info['gt_bbox'].size > 0: |
||||
self.file_list.append({ ** im_info, ** label_info}) |
||||
annotations['images'].append({ |
||||
'height': im_h, |
||||
'width': im_w, |
||||
'id': int(im_info['im_id']), |
||||
'file_name': osp.split(im_info['image'])[1] |
||||
}) |
||||
else: |
||||
neg_file_list.append({ ** im_info, ** label_info}) |
||||
ct += 1 |
||||
|
||||
if self.use_mix: |
||||
self.num_max_boxes = max(self.num_max_boxes, 2 * len(instances)) |
||||
else: |
||||
self.num_max_boxes = max(self.num_max_boxes, len(instances)) |
||||
|
||||
if not ct: |
||||
logging.error( |
||||
"No coco record found in %s' % (file_list)", exit=True) |
||||
self.pos_num = len(self.file_list) |
||||
if self.allow_empty and neg_file_list: |
||||
self.file_list += self._sample_empty(neg_file_list) |
||||
logging.info( |
||||
"{} samples in file {}, including {} positive samples and {} negative samples.". |
||||
format( |
||||
len(self.file_list), anno_path, self.pos_num, |
||||
len(self.file_list) - self.pos_num)) |
||||
self.num_samples = len(self.file_list) |
||||
self.coco_gt = COCO() |
||||
self.coco_gt.dataset = annotations |
||||
self.coco_gt.createIndex() |
||||
|
||||
self._epoch = 0 |
||||
|
||||
def __getitem__(self, idx): |
||||
sample = copy.deepcopy(self.file_list[idx]) |
||||
if self.data_fields is not None: |
||||
sample = {k: sample[k] for k in self.data_fields} |
||||
if self.use_mix and (self.mixup_op.mixup_epoch == -1 or |
||||
self._epoch < self.mixup_op.mixup_epoch): |
||||
if self.num_samples > 1: |
||||
mix_idx = random.randint(1, self.num_samples - 1) |
||||
mix_pos = (mix_idx + idx) % self.num_samples |
||||
else: |
||||
mix_pos = 0 |
||||
sample_mix = copy.deepcopy(self.file_list[mix_pos]) |
||||
if self.data_fields is not None: |
||||
sample_mix = {k: sample_mix[k] for k in self.data_fields} |
||||
sample = self.mixup_op(sample=[ |
||||
ImgDecoder(to_rgb=False)(sample), |
||||
ImgDecoder(to_rgb=False)(sample_mix) |
||||
]) |
||||
sample = self.transforms(sample) |
||||
return sample |
||||
|
||||
def __len__(self): |
||||
return self.num_samples |
||||
|
||||
def set_epoch(self, epoch_id): |
||||
self._epoch = epoch_id |
||||
|
||||
def cluster_yolo_anchor(self, |
||||
num_anchors, |
||||
image_size, |
||||
cache=True, |
||||
cache_path=None, |
||||
iters=300, |
||||
gen_iters=1000, |
||||
thresh=.25): |
||||
""" |
||||
Cluster YOLO anchors. |
||||
|
||||
Reference: |
||||
https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py |
||||
|
||||
Args: |
||||
num_anchors (int): number of clusters |
||||
image_size (list or int): [h, w], being an int means image height and image width are the same. |
||||
cache (bool): whether using cache |
||||
cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset. |
||||
iters (int, optional): iters of kmeans algorithm |
||||
gen_iters (int, optional): iters of genetic algorithm |
||||
threshold (float, optional): anchor scale threshold |
||||
verbose (bool, optional): whether print results |
||||
""" |
||||
if cache_path is None: |
||||
cache_path = self.data_dir |
||||
cluster = YOLOAnchorCluster( |
||||
num_anchors=num_anchors, |
||||
dataset=self, |
||||
image_size=image_size, |
||||
cache=cache, |
||||
cache_path=cache_path, |
||||
iters=iters, |
||||
gen_iters=gen_iters, |
||||
thresh=thresh) |
||||
anchors = cluster() |
||||
return anchors |
||||
|
||||
def add_negative_samples(self, image_dir, empty_ratio=1): |
||||
"""将背景图片加入训练 |
||||
|
||||
Args: |
||||
image_dir (str):背景图片所在的文件夹目录。 |
||||
empty_ratio (float or None): 用于指定负样本占总样本数的比例。如果为None,保留数据集初始化是设置的`empty_ratio`值, |
||||
否则更新原有`empty_ratio`值。如果小于0或大于等于1,则保留全部的负样本。默认为1。 |
||||
|
||||
""" |
||||
import cv2 |
||||
if not osp.isdir(image_dir): |
||||
raise Exception("{} is not a valid image directory.".format( |
||||
image_dir)) |
||||
if empty_ratio is not None: |
||||
self.empty_ratio = empty_ratio |
||||
image_list = os.listdir(image_dir) |
||||
max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds())) |
||||
neg_file_list = list() |
||||
for image in image_list: |
||||
if not is_pic(image): |
||||
continue |
||||
gt_bbox = np.zeros((0, 4), dtype=np.float32) |
||||
gt_class = np.zeros((0, 1), dtype=np.int32) |
||||
gt_score = np.zeros((0, 1), dtype=np.float32) |
||||
is_crowd = np.zeros((0, 1), dtype=np.int32) |
||||
difficult = np.zeros((0, 1), dtype=np.int32) |
||||
|
||||
max_img_id += 1 |
||||
im_fname = osp.join(image_dir, image) |
||||
img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED) |
||||
im_h, im_w, im_c = img_data.shape |
||||
|
||||
im_info = { |
||||
'im_id': np.asarray([max_img_id]), |
||||
'image_shape': np.array( |
||||
[im_h, im_w], dtype=np.int32) |
||||
} |
||||
label_info = { |
||||
'is_crowd': is_crowd, |
||||
'gt_class': gt_class, |
||||
'gt_bbox': gt_bbox, |
||||
'gt_score': gt_score, |
||||
'difficult': difficult |
||||
} |
||||
if 'gt_poly' in self.file_list[0]: |
||||
label_info['gt_poly'] = [] |
||||
|
||||
neg_file_list.append({'image': im_fname, ** im_info, ** label_info}) |
||||
if neg_file_list: |
||||
self.allow_empty = True |
||||
self.file_list += self._sample_empty(neg_file_list) |
||||
logging.info( |
||||
"{} negative samples added. Dataset contains {} positive samples and {} negative samples.". |
||||
format( |
||||
len(self.file_list) - self.num_samples, self.pos_num, |
||||
len(self.file_list) - self.pos_num)) |
||||
self.num_samples = len(self.file_list) |
||||
|
||||
def _sample_empty(self, neg_file_list): |
||||
if 0. <= self.empty_ratio < 1.: |
||||
import random |
||||
total_num = len(self.file_list) |
||||
neg_num = total_num - self.pos_num |
||||
sample_num = min((total_num * self.empty_ratio - neg_num) // |
||||
(1 - self.empty_ratio), len(neg_file_list)) |
||||
return random.sample(neg_file_list, sample_num) |
||||
else: |
||||
return neg_file_list |
Loading…
Reference in new issue