|
|
|
@ -20,21 +20,14 @@ import paddlers.transforms as T |
|
|
|
|
from testing_utils import CommonTest |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSegSliderPredict(CommonTest): |
|
|
|
|
def setUp(self): |
|
|
|
|
self.model = pdrs.tasks.seg.UNet(in_channels=10) |
|
|
|
|
self.transforms = T.Compose([ |
|
|
|
|
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10), |
|
|
|
|
T.ArrangeSegmenter('test') |
|
|
|
|
]) |
|
|
|
|
self.image_path = "data/ssst/multispectral.tif" |
|
|
|
|
self.basename = osp.basename(self.image_path) |
|
|
|
|
|
|
|
|
|
class _TestSliderPredictNamespace: |
|
|
|
|
class TestSliderPredict(CommonTest): |
|
|
|
|
def test_blocksize_and_overlap_whole(self): |
|
|
|
|
# Original image size (256, 256) |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
# Whole-image inference using predict() |
|
|
|
|
pred_whole = self.model.predict(self.image_path, self.transforms) |
|
|
|
|
pred_whole = self.model.predict(self.image_path, |
|
|
|
|
self.transforms) |
|
|
|
|
pred_whole = pred_whole['label_map'] |
|
|
|
|
|
|
|
|
|
# Whole-image inference using slider_predict() |
|
|
|
@ -43,23 +36,23 @@ class TestSegSliderPredict(CommonTest): |
|
|
|
|
self.transforms) |
|
|
|
|
pred1 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred1.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
|
# `block_size` == `overlap` |
|
|
|
|
save_dir = osp.join(td, 'pred2') |
|
|
|
|
with self.assertRaises(ValueError): |
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, 128, 128, |
|
|
|
|
self.transforms) |
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, 128, |
|
|
|
|
128, self.transforms) |
|
|
|
|
|
|
|
|
|
# `block_size` is a tuple |
|
|
|
|
save_dir = osp.join(td, 'pred3') |
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, (128, 32), 0, |
|
|
|
|
self.transforms) |
|
|
|
|
self.model.slider_predict(self.image_path, save_dir, (128, 32), |
|
|
|
|
0, self.transforms) |
|
|
|
|
pred3 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred3.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
@ -69,7 +62,7 @@ class TestSegSliderPredict(CommonTest): |
|
|
|
|
(10, 5), self.transforms) |
|
|
|
|
pred4 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred4.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
@ -82,7 +75,8 @@ class TestSegSliderPredict(CommonTest): |
|
|
|
|
def test_merge_strategy(self): |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
# Whole-image inference using predict() |
|
|
|
|
pred_whole = self.model.predict(self.image_path, self.transforms) |
|
|
|
|
pred_whole = self.model.predict(self.image_path, |
|
|
|
|
self.transforms) |
|
|
|
|
pred_whole = pred_whole['label_map'] |
|
|
|
|
|
|
|
|
|
# 'keep_first' |
|
|
|
@ -96,7 +90,7 @@ class TestSegSliderPredict(CommonTest): |
|
|
|
|
merge_strategy='keep_first') |
|
|
|
|
pred_keepfirst = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred_keepfirst.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
@ -111,7 +105,7 @@ class TestSegSliderPredict(CommonTest): |
|
|
|
|
merge_strategy='keep_last') |
|
|
|
|
pred_keeplast = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred_keeplast.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
@ -126,141 +120,93 @@ class TestSegSliderPredict(CommonTest): |
|
|
|
|
merge_strategy='accum') |
|
|
|
|
pred_accum = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred_accum.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
|
def test_geo_info(self): |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
_, geo_info_in = T.decode_image(self.image_path, read_geo_info=True) |
|
|
|
|
_, geo_info_in = T.decode_image( |
|
|
|
|
self.ref_path, read_geo_info=True) |
|
|
|
|
self.model.slider_predict(self.image_path, td, 128, 0, |
|
|
|
|
self.transforms) |
|
|
|
|
_, geo_info_out = T.decode_image( |
|
|
|
|
osp.join(td, self.basename), read_geo_info=True) |
|
|
|
|
self.assertEqual(geo_info_out['geo_trans'], |
|
|
|
|
geo_info_in['geo_trans']) |
|
|
|
|
self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj']) |
|
|
|
|
|
|
|
|
|
self.assertEqual(geo_info_out['geo_proj'], |
|
|
|
|
geo_info_in['geo_proj']) |
|
|
|
|
|
|
|
|
|
class TestCDSliderPredict(CommonTest): |
|
|
|
|
def setUp(self): |
|
|
|
|
self.model = pdrs.tasks.cd.BIT(in_channels=10) |
|
|
|
|
self.transforms = T.Compose([ |
|
|
|
|
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10), |
|
|
|
|
T.ArrangeChangeDetector('test') |
|
|
|
|
]) |
|
|
|
|
self.image_paths = ("data/ssmt/multispectral_t1.tif", |
|
|
|
|
"data/ssmt/multispectral_t2.tif") |
|
|
|
|
self.basename = osp.basename(self.image_paths[0]) |
|
|
|
|
|
|
|
|
|
def test_blocksize_and_overlap_whole(self): |
|
|
|
|
# Original image size (256, 256) |
|
|
|
|
def test_batch_size(self): |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
# Whole-image inference using predict() |
|
|
|
|
pred_whole = self.model.predict(self.image_paths, self.transforms) |
|
|
|
|
pred_whole = pred_whole['label_map'] |
|
|
|
|
|
|
|
|
|
# Whole-image inference using slider_predict() |
|
|
|
|
save_dir = osp.join(td, 'pred1') |
|
|
|
|
self.model.slider_predict(self.image_paths, save_dir, 256, 0, |
|
|
|
|
self.transforms) |
|
|
|
|
pred1 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred1.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
|
# `block_size` == `overlap` |
|
|
|
|
save_dir = osp.join(td, 'pred2') |
|
|
|
|
with self.assertRaises(ValueError): |
|
|
|
|
self.model.slider_predict(self.image_paths, save_dir, 128, 128, |
|
|
|
|
self.transforms) |
|
|
|
|
|
|
|
|
|
# `block_size` is a tuple |
|
|
|
|
save_dir = osp.join(td, 'pred3') |
|
|
|
|
self.model.slider_predict(self.image_paths, save_dir, (128, 32), 0, |
|
|
|
|
self.transforms) |
|
|
|
|
pred3 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred3.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
|
# `block_size` and `overlap` are both tuples |
|
|
|
|
save_dir = osp.join(td, 'pred4') |
|
|
|
|
self.model.slider_predict(self.image_paths, save_dir, (128, 100), |
|
|
|
|
(10, 5), self.transforms) |
|
|
|
|
pred4 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred4.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
|
# `block_size` larger than image size |
|
|
|
|
save_dir = osp.join(td, 'pred5') |
|
|
|
|
with self.assertRaises(ValueError): |
|
|
|
|
self.model.slider_predict(self.image_paths, save_dir, 512, 0, |
|
|
|
|
self.transforms) |
|
|
|
|
|
|
|
|
|
def test_merge_strategy(self): |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
# Whole-image inference using predict() |
|
|
|
|
pred_whole = self.model.predict(self.image_paths, self.transforms) |
|
|
|
|
pred_whole = pred_whole['label_map'] |
|
|
|
|
|
|
|
|
|
# 'keep_first' |
|
|
|
|
save_dir = osp.join(td, 'keep_first') |
|
|
|
|
# batch_size = 1 |
|
|
|
|
save_dir = osp.join(td, 'bs1') |
|
|
|
|
self.model.slider_predict( |
|
|
|
|
self.image_paths, |
|
|
|
|
self.image_path, |
|
|
|
|
save_dir, |
|
|
|
|
128, |
|
|
|
|
64, |
|
|
|
|
self.transforms, |
|
|
|
|
merge_strategy='keep_first') |
|
|
|
|
pred_keepfirst = T.decode_image( |
|
|
|
|
merge_strategy='keep_first', |
|
|
|
|
batch_size=1) |
|
|
|
|
pred_bs1 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred_keepfirst.shape, pred_whole.shape) |
|
|
|
|
|
|
|
|
|
# 'keep_last' |
|
|
|
|
save_dir = osp.join(td, 'keep_last') |
|
|
|
|
# batch_size = 4 |
|
|
|
|
save_dir = osp.join(td, 'bs4') |
|
|
|
|
self.model.slider_predict( |
|
|
|
|
self.image_paths, |
|
|
|
|
self.image_path, |
|
|
|
|
save_dir, |
|
|
|
|
128, |
|
|
|
|
64, |
|
|
|
|
self.transforms, |
|
|
|
|
merge_strategy='keep_last') |
|
|
|
|
pred_keeplast = T.decode_image( |
|
|
|
|
merge_strategy='keep_first', |
|
|
|
|
batch_size=4) |
|
|
|
|
pred_bs4 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred_keeplast.shape, pred_whole.shape) |
|
|
|
|
self.check_output_equal(pred_bs4, pred_bs1) |
|
|
|
|
|
|
|
|
|
# 'accum' |
|
|
|
|
save_dir = osp.join(td, 'accum') |
|
|
|
|
# batch_size = 8 |
|
|
|
|
save_dir = osp.join(td, 'bs4') |
|
|
|
|
self.model.slider_predict( |
|
|
|
|
self.image_paths, |
|
|
|
|
self.image_path, |
|
|
|
|
save_dir, |
|
|
|
|
128, |
|
|
|
|
64, |
|
|
|
|
self.transforms, |
|
|
|
|
merge_strategy='accum') |
|
|
|
|
pred_accum = T.decode_image( |
|
|
|
|
merge_strategy='keep_first', |
|
|
|
|
batch_size=8) |
|
|
|
|
pred_bs8 = T.decode_image( |
|
|
|
|
osp.join(save_dir, self.basename), |
|
|
|
|
to_uint8=False, |
|
|
|
|
read_raw=True, |
|
|
|
|
decode_sar=False) |
|
|
|
|
self.check_output_equal(pred_accum.shape, pred_whole.shape) |
|
|
|
|
self.check_output_equal(pred_bs8, pred_bs1) |
|
|
|
|
|
|
|
|
|
def test_geo_info(self): |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
_, geo_info_in = T.decode_image( |
|
|
|
|
self.image_paths[0], read_geo_info=True) |
|
|
|
|
self.model.slider_predict(self.image_paths, td, 128, 0, |
|
|
|
|
self.transforms) |
|
|
|
|
_, geo_info_out = T.decode_image( |
|
|
|
|
osp.join(td, self.basename), read_geo_info=True) |
|
|
|
|
self.assertEqual(geo_info_out['geo_trans'], |
|
|
|
|
geo_info_in['geo_trans']) |
|
|
|
|
self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj']) |
|
|
|
|
|
|
|
|
|
class TestSegSliderPredict(_TestSliderPredictNamespace.TestSliderPredict): |
|
|
|
|
def setUp(self): |
|
|
|
|
self.model = pdrs.tasks.seg.UNet(in_channels=10) |
|
|
|
|
self.transforms = T.Compose([ |
|
|
|
|
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10), |
|
|
|
|
T.ArrangeSegmenter('test') |
|
|
|
|
]) |
|
|
|
|
self.image_path = "data/ssst/multispectral.tif" |
|
|
|
|
self.ref_path = self.image_path |
|
|
|
|
self.basename = osp.basename(self.ref_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestCDSliderPredict(_TestSliderPredictNamespace.TestSliderPredict): |
|
|
|
|
def setUp(self): |
|
|
|
|
self.model = pdrs.tasks.cd.BIT(in_channels=10) |
|
|
|
|
self.transforms = T.Compose([ |
|
|
|
|
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10), |
|
|
|
|
T.ArrangeChangeDetector('test') |
|
|
|
|
]) |
|
|
|
|
self.image_path = ("data/ssmt/multispectral_t1.tif", |
|
|
|
|
"data/ssmt/multispectral_t2.tif") |
|
|
|
|
self.ref_path = self.image_path[0] |
|
|
|
|
self.basename = osp.basename(self.ref_path) |
|
|
|
|