Merge branch 'det1' of https://github.com/juncaipeng/PaddleRS into det1
commit
806335ad29
11 changed files with 358 additions and 16 deletions
@ -1,2 +1,3 @@ |
|||||||
from .voc import VOCDetection |
from .voc import VOCDetection |
||||||
from .seg_dataset import SegDataset |
from .seg_dataset import SegDataset |
||||||
|
from .raster import Raster |
@ -0,0 +1,139 @@ |
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||||
|
# |
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||||
|
# you may not use this file except in compliance with the License. |
||||||
|
# You may obtain a copy of the License at |
||||||
|
# |
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||||
|
# |
||||||
|
# Unless required by applicable law or agreed to in writing, software |
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||||
|
# See the License for the specific language governing permissions and |
||||||
|
# limitations under the License. |
||||||
|
|
||||||
|
import os.path as osp |
||||||
|
import numpy as np |
||||||
|
from typing import List, Tuple, Union |
||||||
|
from paddlers.utils import raster2uint8 |
||||||
|
|
||||||
|
try: |
||||||
|
from osgeo import gdal |
||||||
|
except: |
||||||
|
import gdal |
||||||
|
|
||||||
|
|
||||||
|
class Raster: |
||||||
|
def __init__(self, |
||||||
|
path: str, |
||||||
|
band_list: Union[List[int], Tuple[int], None]=None, |
||||||
|
to_uint8: bool=False) -> None: |
||||||
|
""" Class of read raster. |
||||||
|
|
||||||
|
Args: |
||||||
|
path (str): The path of raster. |
||||||
|
band_list (Union[List[int], Tuple[int], None], optional): |
||||||
|
band list (start with 1) or None (all of bands). Defaults to None. |
||||||
|
to_uint8 (bool, optional): |
||||||
|
Convert uint8 or return raw data. Defaults to False. |
||||||
|
""" |
||||||
|
super(Raster, self).__init__() |
||||||
|
if osp.exists(path): |
||||||
|
self.path = path |
||||||
|
self.__src_data = np.load(path) if path.split(".")[-1] == "npy" \ |
||||||
|
else gdal.Open(path) |
||||||
|
self.__getInfo() |
||||||
|
self.to_uint8 = to_uint8 |
||||||
|
self.setBands(band_list) |
||||||
|
else: |
||||||
|
raise ValueError("The path {0} not exists.".format(path)) |
||||||
|
|
||||||
|
def setBands(self, |
||||||
|
band_list: Union[List[int], Tuple[int], None]) -> None: |
||||||
|
""" Set band of data. |
||||||
|
|
||||||
|
Args: |
||||||
|
band_list (Union[List[int], Tuple[int], None]): |
||||||
|
band list (start with 1) or None (all of bands). |
||||||
|
""" |
||||||
|
if band_list is not None: |
||||||
|
if len(band_list) > self.bands: |
||||||
|
raise ValueError("The lenght of band_list must be less than {0}.".format(str(self.bands))) |
||||||
|
if max(band_list) > self.bands or min(band_list) < 1: |
||||||
|
raise ValueError("The range of band_list must within [1, {0}].".format(str(self.bands))) |
||||||
|
self.band_list = band_list |
||||||
|
|
||||||
|
def getArray(self, |
||||||
|
start_loc: Union[List[int], Tuple[int], None]=None, |
||||||
|
block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray: |
||||||
|
""" Get ndarray data |
||||||
|
|
||||||
|
Args: |
||||||
|
start_loc (Union[List[int], Tuple[int], None], optional): |
||||||
|
Coordinates of the upper left corner of the block, if None means return full image. |
||||||
|
block_size (Union[List[int], Tuple[int]], optional): |
||||||
|
Block size. Defaults to [512, 512]. |
||||||
|
|
||||||
|
Returns: |
||||||
|
np.ndarray: data's ndarray. |
||||||
|
""" |
||||||
|
if start_loc is None: |
||||||
|
return self.__getAarray() |
||||||
|
else: |
||||||
|
return self.__getBlock(start_loc, block_size) |
||||||
|
|
||||||
|
def __getInfo(self) -> None: |
||||||
|
self.bands = self.__src_data.RasterCount |
||||||
|
self.width = self.__src_data.RasterXSize |
||||||
|
self.height = self.__src_data.RasterYSize |
||||||
|
|
||||||
|
def __getAarray(self, window: Union[None, List[int], Tuple[int]]=None) -> np.ndarray: |
||||||
|
if window is not None: |
||||||
|
xoff, yoff, xsize, ysize = window |
||||||
|
if self.band_list is None: |
||||||
|
if window is None: |
||||||
|
ima = self.__src_data.ReadAsArray() |
||||||
|
else: |
||||||
|
ima = self.__src_data.ReadAsArray(xoff, yoff, xsize, ysize) |
||||||
|
else: |
||||||
|
band_array = [] |
||||||
|
for b in self.band_list: |
||||||
|
if window is None: |
||||||
|
band_i = self.__src_data.GetRasterBand(b).ReadAsArray() |
||||||
|
else: |
||||||
|
band_i = self.__src_data.GetRasterBand(b).ReadAsArray(xoff, yoff, xsize, ysize) |
||||||
|
band_array.append(band_i) |
||||||
|
ima = np.stack(band_array, axis=0) |
||||||
|
if self.bands == 1: |
||||||
|
# the type is complex means this is a SAR data |
||||||
|
if isinstance(type(ima[0, 0]), complex): |
||||||
|
ima = abs(ima) |
||||||
|
else: |
||||||
|
ima = ima.transpose((1, 2, 0)) |
||||||
|
if self.to_uint8 is True: |
||||||
|
ima = raster2uint8(ima) |
||||||
|
return ima |
||||||
|
|
||||||
|
def __getBlock(self, |
||||||
|
start_loc: Union[List[int], Tuple[int]], |
||||||
|
block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray: |
||||||
|
if len(start_loc) != 2 or len(block_size) != 2: |
||||||
|
raise ValueError("The length start_loc/block_size must be 2.") |
||||||
|
xoff, yoff = start_loc |
||||||
|
xsize, ysize = block_size |
||||||
|
if (xoff < 0 or xoff > self.width) or (yoff < 0 or yoff > self.height): |
||||||
|
raise ValueError( |
||||||
|
"start_loc must be within [0-{0}, 0-{1}].".format(str(self.width), str(self.height))) |
||||||
|
if xoff + xsize > self.width: |
||||||
|
xsize = self.width - xoff |
||||||
|
if yoff + ysize > self.height: |
||||||
|
ysize = self.height - yoff |
||||||
|
ima = self.__getAarray([int(xoff), int(yoff), int(xsize), int(ysize)]) |
||||||
|
h, w = ima.shape[:2] if len(ima.shape) == 3 else ima.shape |
||||||
|
if self.bands != 1: |
||||||
|
tmp = np.zeros((block_size[0], block_size[1], self.bands), dtype=ima.dtype) |
||||||
|
tmp[:h, :w, :] = ima |
||||||
|
else: |
||||||
|
tmp = np.zeros((block_size[0], block_size[1]), dtype=ima.dtype) |
||||||
|
tmp[:h, :w] = ima |
||||||
|
return tmp |
@ -0,0 +1,95 @@ |
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||||
|
# |
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||||
|
# you may not use this file except in compliance with the License. |
||||||
|
# You may obtain a copy of the License at |
||||||
|
# |
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||||
|
# |
||||||
|
# Unless required by applicable law or agreed to in writing, software |
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||||
|
# See the License for the specific language governing permissions and |
||||||
|
# limitations under the License. |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
import operator |
||||||
|
from functools import reduce |
||||||
|
|
||||||
|
|
||||||
|
def raster2uint8(image: np.ndarray) -> np.ndarray: |
||||||
|
""" Convert raster to uint8. |
||||||
|
Args: |
||||||
|
image (np.ndarray): image. |
||||||
|
Returns: |
||||||
|
np.ndarray: image on uint8. |
||||||
|
""" |
||||||
|
dtype = image.dtype.name |
||||||
|
dtypes = ["uint8", "uint16", "float32"] |
||||||
|
if dtype not in dtypes: |
||||||
|
raise ValueError(f"'dtype' must be uint8/uint16/float32, not {dtype}.") |
||||||
|
if dtype == "uint8": |
||||||
|
return image |
||||||
|
else: |
||||||
|
if dtype == "float32": |
||||||
|
image = _sample_norm(image) |
||||||
|
return _two_percentLinear(image) |
||||||
|
|
||||||
|
|
||||||
|
# 2% linear stretch |
||||||
|
def _two_percentLinear(image: np.ndarray, max_out: int=255, min_out: int=0) -> np.ndarray: |
||||||
|
def _gray_process(gray, maxout=max_out, minout=min_out): |
||||||
|
# get the corresponding gray level at 98% histogram |
||||||
|
high_value = np.percentile(gray, 98) |
||||||
|
low_value = np.percentile(gray, 2) |
||||||
|
truncated_gray = np.clip(gray, a_min=low_value, a_max=high_value) |
||||||
|
processed_gray = ((truncated_gray - low_value) / (high_value - low_value)) * (maxout - minout) |
||||||
|
return processed_gray |
||||||
|
if len(image.shape) == 3: |
||||||
|
processes = [] |
||||||
|
for b in range(image.shape[-1]): |
||||||
|
processes.append(_gray_process(image[:, :, b])) |
||||||
|
result = np.stack(processes, axis=2) |
||||||
|
else: # if len(image.shape) == 2 |
||||||
|
result = _gray_process(image) |
||||||
|
return np.uint8(result) |
||||||
|
|
||||||
|
|
||||||
|
# simple image standardization |
||||||
|
def _sample_norm(image: np.ndarray, NUMS: int=65536) -> np.ndarray: |
||||||
|
stretches = [] |
||||||
|
if len(image.shape) == 3: |
||||||
|
for b in range(image.shape[-1]): |
||||||
|
stretched = _stretch(image[:, :, b], NUMS) |
||||||
|
stretched /= float(NUMS) |
||||||
|
stretches.append(stretched) |
||||||
|
stretched_img = np.stack(stretches, axis=2) |
||||||
|
else: # if len(image.shape) == 2 |
||||||
|
stretched_img = _stretch(image, NUMS) |
||||||
|
return np.uint8(stretched_img * 255) |
||||||
|
|
||||||
|
|
||||||
|
# histogram equalization |
||||||
|
def _stretch(ima: np.ndarray, NUMS: int) -> np.ndarray: |
||||||
|
hist = _histogram(ima, NUMS) |
||||||
|
lut = [] |
||||||
|
for bt in range(0, len(hist), NUMS): |
||||||
|
# step size |
||||||
|
step = reduce(operator.add, hist[bt : bt + NUMS]) / (NUMS - 1) |
||||||
|
# create balanced lookup table |
||||||
|
n = 0 |
||||||
|
for i in range(NUMS): |
||||||
|
lut.append(n / step) |
||||||
|
n += hist[i + bt] |
||||||
|
np.take(lut, ima, out=ima) |
||||||
|
return ima |
||||||
|
|
||||||
|
|
||||||
|
# calculate histogram |
||||||
|
def _histogram(ima: np.ndarray, NUMS: int) -> np.ndarray: |
||||||
|
bins = list(range(0, NUMS)) |
||||||
|
flat = ima.flat |
||||||
|
n = np.searchsorted(np.sort(flat), bins) |
||||||
|
n = np.concatenate([n, [len(flat)]]) |
||||||
|
hist = n[1:] - n[:-1] |
||||||
|
return hist |
@ -0,0 +1,53 @@ |
|||||||
|
# 使用教程——训练模型 |
||||||
|
|
||||||
|
本目录下整理了使用PaddleRS训练模型的示例代码,代码中均提供了示例数据的自动下载,并均使用单张GPU卡进行训练。 |
||||||
|
|
||||||
|
|代码 | 模型任务 | 数据 | |
||||||
|
|------|--------|---------| |
||||||
|
|object_detection/ppyolo.py | 目标检测PPYOLO | 昆虫检测 | |
||||||
|
|semantic_segmentation/deeplabv3p_resnet50_vd.py | 语义分割DeepLabV3 | 视盘分割 | |
||||||
|
|
||||||
|
<!-- 可参考API接口说明了解示例代码中的API: |
||||||
|
* [数据集读取API](../../docs/apis/datasets.md) |
||||||
|
* [数据预处理和数据增强API](../../docs/apis/transforms/transforms.md) |
||||||
|
* [模型API/模型加载API](../../docs/apis/models/README.md) |
||||||
|
* [预测结果可视化API](../../docs/apis/visualize.md) --> |
||||||
|
|
||||||
|
|
||||||
|
# 环境准备 |
||||||
|
|
||||||
|
- [PaddlePaddle安装](https://www.paddlepaddle.org.cn/install/quick) |
||||||
|
* 版本要求:PaddlePaddle>=2.1.0 |
||||||
|
|
||||||
|
<!-- - [PaddleRS安装](../../docs/install.md) --> |
||||||
|
|
||||||
|
## 开始训练 |
||||||
|
* 修改tutorials/train/semantic_segmentation/deeplabv3p_resnet50_vd.py中sys.path路径 |
||||||
|
``` |
||||||
|
sys.path.append("your/PaddleRS/path") |
||||||
|
``` |
||||||
|
|
||||||
|
* 在安装PaddleRS后,使用如下命令开始训练,代码会自动下载训练数据, 并均使用单张GPU卡进行训练。 |
||||||
|
|
||||||
|
```commandline |
||||||
|
export CUDA_VISIBLE_DEVICES=0 |
||||||
|
python tutorials/train/semantic_segmentation/deeplabv3p_resnet50_vd.py |
||||||
|
``` |
||||||
|
|
||||||
|
* 若需使用多张GPU卡进行训练,例如使用2张卡时执行: |
||||||
|
|
||||||
|
```commandline |
||||||
|
python -m paddle.distributed.launch --gpus 0,1 tutorials/train/semantic_segmentation/deeplabv3p_resnet50_vd.py |
||||||
|
``` |
||||||
|
使用多卡时,参考[训练参数调整](../../docs/parameters.md)调整学习率和批量大小。 |
||||||
|
|
||||||
|
|
||||||
|
## VisualDL可视化训练指标 |
||||||
|
在模型训练过程,在`train`函数中,将`use_vdl`设为True,则训练过程会自动将训练日志以VisualDL的格式打点在`save_dir`(用户自己指定的路径)下的`vdl_log`目录,用户可以使用如下命令启动VisualDL服务,查看可视化指标 |
||||||
|
```commandline |
||||||
|
visualdl --logdir output/deeplabv3p_resnet50_vd/vdl_log --port 8001 |
||||||
|
``` |
||||||
|
|
||||||
|
服务启动后,使用浏览器打开 https://0.0.0.0:8001 或 https://localhost:8001 |
||||||
|
|
||||||
|
|
@ -0,0 +1,54 @@ |
|||||||
|
import sys |
||||||
|
|
||||||
|
sys.path.append("/ssd2/pengjuncai/PaddleRS") |
||||||
|
|
||||||
|
import paddlers as pdrs |
||||||
|
from paddlers import transforms as T |
||||||
|
|
||||||
|
train_transforms = T.Compose([ |
||||||
|
T.MixupImage(mixup_epoch=-1), T.RandomDistort(), |
||||||
|
T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(), |
||||||
|
T.RandomHorizontalFlip(), T.BatchRandomResize( |
||||||
|
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608], |
||||||
|
interp='RANDOM'), T.Normalize( |
||||||
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
||||||
|
]) |
||||||
|
|
||||||
|
eval_transforms = T.Compose([ |
||||||
|
T.Resize( |
||||||
|
target_size=608, interp='CUBIC'), T.Normalize( |
||||||
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
||||||
|
]) |
||||||
|
|
||||||
|
|
||||||
|
train_dataset = pdrs.datasets.VOCDetection( |
||||||
|
data_dir='insect_det', |
||||||
|
file_list='insect_det/train_list.txt', |
||||||
|
label_list='insect_det/labels.txt', |
||||||
|
transforms=train_transforms, |
||||||
|
shuffle=True) |
||||||
|
|
||||||
|
eval_dataset = pdrs.datasets.VOCDetection( |
||||||
|
data_dir='insect_det', |
||||||
|
file_list='insect_det/val_list.txt', |
||||||
|
label_list='insect_det/labels.txt', |
||||||
|
transforms=eval_transforms, |
||||||
|
shuffle=False) |
||||||
|
|
||||||
|
|
||||||
|
num_classes = len(train_dataset.labels) |
||||||
|
model = pdrs.tasks.det.PPYOLO(num_classes=num_classes, backbone='ResNet50_vd_dcn') |
||||||
|
|
||||||
|
model.train( |
||||||
|
num_epochs=200, |
||||||
|
train_dataset=train_dataset, |
||||||
|
train_batch_size=8, |
||||||
|
eval_dataset=eval_dataset, |
||||||
|
pretrain_weights='COCO', |
||||||
|
learning_rate=0.005 / 12, |
||||||
|
warmup_steps=500, |
||||||
|
warmup_start_lr=0.0, |
||||||
|
save_interval_epochs=5, |
||||||
|
lr_decay_epochs=[85, 135], |
||||||
|
save_dir='output/ppyolo_r50vd_dcn', |
||||||
|
use_vdl=True) |
Loading…
Reference in new issue