Merge branch 'develop' into add_examples

own
Bobholamovic 2 years ago
commit 6b7b09cd21
  1. 2
      paddlers/datasets/clas_dataset.py
  2. 8
      paddlers/datasets/coco.py
  3. 2
      paddlers/datasets/seg_dataset.py
  4. 3
      paddlers/datasets/voc.py
  5. 4
      paddlers/deploy/predictor.py
  6. 3
      paddlers/models/__init__.py
  7. 18
      paddlers/rs_models/cd/changeformer.py
  8. 6
      paddlers/rs_models/cd/layers/pd_timm.py
  9. 2
      paddlers/rs_models/cd/stanet.py
  10. 14
      paddlers/rs_models/clas/condensenet_v2.py
  11. 12
      paddlers/rs_models/res/generators/rcan.py
  12. 20
      paddlers/tasks/base.py
  13. 75
      paddlers/tasks/change_detector.py
  14. 47
      paddlers/tasks/classifier.py
  15. 18
      paddlers/tasks/object_detector.py
  16. 83
      paddlers/tasks/segmenter.py
  17. 23
      paddlers/tasks/utils/det_metrics/coco_utils.py
  18. 8
      paddlers/tasks/utils/det_metrics/metrics.py
  19. 4
      paddlers/tasks/utils/visualize.py
  20. 18
      paddlers/transforms/batch_operators.py
  21. 18
      paddlers/transforms/functions.py
  22. 14
      paddlers/transforms/operators.py
  23. 2
      paddlers/utils/checkpoint.py
  24. 5
      paddlers/utils/download.py
  25. 4
      paddlers/utils/utils.py
  26. 2
      tests/testing_utils.py
  27. 2
      tools/coco2mask.py
  28. 2
      tools/coco_tools/json_AnnoSta.py
  29. 2
      tools/coco_tools/json_Img2Json.py
  30. 2
      tools/coco_tools/json_ImgSta.py
  31. 2
      tools/coco_tools/json_InfoShow.py
  32. 2
      tools/coco_tools/json_Merge.py
  33. 2
      tools/coco_tools/json_Split.py
  34. 11
      tools/raster2geotiff.py
  35. 2
      tools/utils/__init__.py

@ -48,8 +48,6 @@ class ClasDataset(BaseDataset):
self.file_list = list()
self.labels = list()
# TODO:非None时,让用户跳转数据集分析生成label_list
# 不要在此处分析label file
if label_list is not None:
with open(label_list, encoding=get_encoding(label_list)) as f:
for line in f:

@ -58,11 +58,11 @@ class COCODetDataset(BaseDataset):
allow_empty=False,
empty_ratio=1.):
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
# or matplotlib.backends is imported for the first time
# pycocotools import matplotlib
# or matplotlib.backends is imported for the first time.
import matplotlib
matplotlib.use('Agg')
from pycocotools.coco import COCO
super(COCODetDataset, self).__init__(data_dir, label_list, transforms,
num_workers, shuffle)
@ -159,7 +159,7 @@ class COCODetDataset(BaseDataset):
difficults = []
for inst in instances:
# check gt bbox
# Check gt bbox
if inst.get('ignore', False):
continue
if 'bbox' not in inst.keys():
@ -168,7 +168,7 @@ class COCODetDataset(BaseDataset):
if not any(np.array(inst['bbox'])):
continue
# read box
# Read the box
x1, y1, box_w, box_h = inst['bbox']
x2 = x1 + box_w
y2 = y1 + box_h

@ -49,8 +49,6 @@ class SegDataset(BaseDataset):
self.file_list = list()
self.labels = list()
# TODO:非None时,让用户跳转数据集分析生成label_list
# 不要在此处分析label file
if label_list is not None:
with open(label_list, encoding=get_encoding(label_list)) as f:
for line in f:

@ -58,8 +58,7 @@ class VOCDetDataset(BaseDataset):
allow_empty=False,
empty_ratio=1.):
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
# or matplotlib.backends is imported for the first time
# pycocotools import matplotlib
# or matplotlib.backends is imported for the first time.
import matplotlib
matplotlib.use('Agg')
from pycocotools.coco import COCO

@ -97,7 +97,7 @@ class Predictor(object):
osp.join(self.model_dir, 'model.pdiparams'))
if use_gpu:
# 设置GPU初始显存(单位M)和Device ID
# Set memory on GPUs (in MB) and device ID
config.enable_use_gpu(200, gpu_id)
config.switch_ir_optim(True)
if use_trt:
@ -127,7 +127,7 @@ class Predictor(object):
)
else:
try:
# cache 10 different shapes for mkldnn to avoid memory leak
# Cache 10 different shapes for mkldnn to avoid memory leak.
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
config.set_cpu_math_library_num_threads(mkl_thread_num)

@ -13,3 +13,6 @@
# limitations under the License.
from . import ppcls, ppdet, ppseg, ppgan
import paddlers.models.ppseg.models.losses as seg_losses
import paddlers.models.ppdet.modeling.losses as det_losses
import paddlers.models.ppcls.loss as clas_losses

@ -259,7 +259,7 @@ class EncoderTransformer_v3(nn.Layer):
self.depths = depths
self.embed_dims = embed_dims
# patch embedding definitions
# Patch embedding definitions
self.patch_embed1 = OverlapPatchEmbed(
img_size=img_size,
patch_size=7,
@ -406,7 +406,7 @@ class EncoderTransformer_v3(nn.Layer):
B = x.shape[0]
outs = []
# stage 1
# Stage 1
x1, H1, W1 = self.patch_embed1(x)
for i, blk in enumerate(self.block1):
x1 = blk(x1, H1, W1)
@ -416,7 +416,7 @@ class EncoderTransformer_v3(nn.Layer):
[0, 3, 1, 2])
outs.append(x1)
# stage 2
# Stage 2
x1, H1, W1 = self.patch_embed2(x1)
for i, blk in enumerate(self.block2):
x1 = blk(x1, H1, W1)
@ -426,7 +426,7 @@ class EncoderTransformer_v3(nn.Layer):
[0, 3, 1, 2])
outs.append(x1)
# stage 3
# Stage 3
x1, H1, W1 = self.patch_embed3(x1)
for i, blk in enumerate(self.block3):
x1 = blk(x1, H1, W1)
@ -436,7 +436,7 @@ class EncoderTransformer_v3(nn.Layer):
[0, 3, 1, 2])
outs.append(x1)
# stage 4
# Stage 4
x1, H1, W1 = self.patch_embed4(x1)
for i, blk in enumerate(self.block4):
x1 = blk(x1, H1, W1)
@ -467,11 +467,11 @@ class DecoderTransformer_v3(nn.Layer):
decoder_softmax=False,
feature_strides=[2, 4, 8, 16]):
super(DecoderTransformer_v3, self).__init__()
# assert
assert len(feature_strides) == len(in_channels)
assert min(feature_strides) == feature_strides[0]
# settings
# Settings
self.feature_strides = feature_strides
self.input_transform = input_transform
self.in_index = in_index
@ -491,7 +491,7 @@ class DecoderTransformer_v3(nn.Layer):
self.linear_c1 = MLP(input_dim=c1_in_channels,
embed_dim=self.embedding_dim)
# convolutional Difference Layers
# Convolutional Difference Layers
self.diff_c4 = conv_diff(
in_channels=2 * self.embedding_dim, out_channels=self.embedding_dim)
self.diff_c3 = conv_diff(
@ -501,7 +501,7 @@ class DecoderTransformer_v3(nn.Layer):
self.diff_c1 = conv_diff(
in_channels=2 * self.embedding_dim, out_channels=self.embedding_dim)
# taking outputs from middle of the encoder
# Take outputs from middle of the encoder
self.make_pred_c4 = make_prediction(
in_channels=self.embedding_dim, out_channels=self.output_nc)
self.make_pred_c3 = make_prediction(

@ -38,7 +38,7 @@ class DropPath(nn.Layer):
Returns:
output: output tensor after drop path
"""
# if prob is 0 or eval mode, return original input
# If prob is 0 or is in eval mode, return original input.
if self.drop_prob == 0. or not self.training:
return inputs
keep_prob = 1 - self.drop_prob
@ -47,8 +47,8 @@ class DropPath(nn.Layer):
) # shape=(N, 1, 1, 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=inputs.dtype)
random_tensor = random_tensor.floor() # mask
output = inputs.divide(
keep_prob) * random_tensor # divide to keep same output expectation
# Make division to keep output expectation same.
output = inputs.divide(keep_prob) * random_tensor
return output
def forward(self, inputs):

@ -263,7 +263,7 @@ class PAMBlock(nn.Layer):
def _attend(self, query, key, value):
energy = paddle.bmm(query.transpose((0, 2, 1)),
key) # batch matrix multiplication
key) # Batched matrix multiplication
energy = (self.key_ch**(-0.5)) * energy
attention = F.softmax(energy, axis=-1)
out = paddle.bmm(value, attention.transpose((0, 2, 1)))

@ -87,11 +87,11 @@ class Conv(nn.Sequential):
def ShuffleLayer(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# reshape
# Reshape
x = x.reshape((batchsize, groups, channels_per_group, height, width))
# transpose
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# reshape
# Reshape
x = x.reshape((batchsize, groups * channels_per_group, height, width))
return x
@ -99,11 +99,11 @@ def ShuffleLayer(x, groups):
def ShuffleLayerTrans(x, groups):
batchsize, num_channels, height, width = x.shape
channels_per_group = num_channels // groups
# reshape
# Reshape
x = x.reshape((batchsize, channels_per_group, groups, height, width))
# transpose
# Transpose
x = x.transpose((0, 2, 1, 3, 4))
# reshape
# Reshape
x = x.reshape((batchsize, channels_per_group * groups, height, width))
return x
@ -385,7 +385,7 @@ class CondenseNetV2(nn.Layer):
return out
def _initialize(self):
# initialize
# Initialize
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
nn.initializer.KaimingNormal()(m.weight)

@ -1,4 +1,4 @@
# base on https://github.com/kongdebug/RCAN-Paddle
# Based on https://github.com/kongdebug/RCAN-Paddle
import math
import paddle
@ -37,9 +37,9 @@ class MeanShift(nn.Conv2D):
class CALayer(nn.Layer):
def __init__(self, channel, reduction=16):
super(CALayer, self).__init__()
# global average pooling: feature --> point
# Global average pooling: feature --> point
self.avg_pool = nn.AdaptiveAvgPool2D(1)
# feature channel downscale and upscale --> channel weight
# Feature channel downscale and upscale --> channel weight
self.conv_du = nn.Sequential(
nn.Conv2D(
channel, channel // reduction, 1, padding=0, bias_attr=True),
@ -157,10 +157,10 @@ class RCAN(nn.Layer):
rgb_std = (1.0, 1.0, 1.0)
self.sub_mean = MeanShift(rgb_range, rgb_mean, rgb_std)
# define head module
# Define head module
modules_head = [conv(n_colors, n_feats, kernel_size)]
# define body module
# Define body module
modules_body = [
ResidualGroup(
conv, n_feats, kernel_size, reduction, act=act, res_scale= 1, n_resblocks=n_resblocks) \
@ -168,7 +168,7 @@ class RCAN(nn.Layer):
modules_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
# Define tail module
modules_tail = [
Upsampler(
conv, scale, n_feats, act=False),

@ -76,10 +76,10 @@ class BaseModel(metaclass=ModelMeta):
self.eval_metrics = None
self.best_accuracy = -1.
self.best_model_epoch = -1
# 是否使用多卡间同步BatchNorm均值和方差
# Whether to use synchronized BN
self.sync_bn = False
self.status = 'Normal'
# 已完成迭代轮数,为恢复训练时的起始轮数
# The initial epoch when training is resumed
self.completed_epochs = 0
self.pruner = None
self.pruning_ratios = None
@ -239,7 +239,7 @@ class BaseModel(metaclass=ModelMeta):
mode='w') as f:
yaml.dump(model_info, f)
# 评估结果保存
# Save evaluation details
if hasattr(self, 'eval_details'):
with open(osp.join(save_dir, 'eval_details.json'), 'w') as f:
json.dump(self.eval_details, f)
@ -258,7 +258,7 @@ class BaseModel(metaclass=ModelMeta):
mode='w') as f:
yaml.dump(quant_info, f)
# 模型保存成功的标志
# Success flag
open(osp.join(save_dir, '.success'), 'w').close()
logging.info("Model saved in {}.".format(save_dir))
@ -391,7 +391,7 @@ class BaseModel(metaclass=ModelMeta):
step_time_tic = step_time_toc
current_step += 1
# 每间隔log_interval_steps,输出loss信息
# Log loss info every log_interval_steps
if current_step % log_interval_steps == 0 and local_rank == 0:
if use_vdl:
for k, v in outputs.items():
@ -399,7 +399,7 @@ class BaseModel(metaclass=ModelMeta):
'{}-Metrics/Training(Step): {}'.format(
task_id, k), v, current_step)
# 估算剩余时间
# Estimation remaining time
avg_step_time = train_step_time.avg()
eta = avg_step_time * (train_total_step - current_step)
if eval_dataset is not None:
@ -427,14 +427,14 @@ class BaseModel(metaclass=ModelMeta):
self.net.set_state_dict(ema.apply())
eval_epoch_tic = time.time()
# 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存
# Every save_interval_epochs, evaluate and save the model
if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
if eval_dataset is not None and eval_dataset.num_samples > 0:
eval_result = self.evaluate(
eval_dataset,
batch_size=eval_batch_size,
return_details=True)
# 保存最优模型
# Save the optimial model
if local_rank == 0:
self.eval_metrics, self.eval_details = eval_result
if use_vdl:
@ -548,7 +548,7 @@ class BaseModel(metaclass=ModelMeta):
"Exported inference model does not support quantization-aware training.",
exit=True)
if quant_config is None:
# default quantization configuration
# Default quantization configuration
quant_config = {
# {None, 'PACT'}. Weight preprocess type. If None, no preprocessing is performed.
'weight_preprocess_type': None,
@ -669,7 +669,7 @@ class BaseModel(metaclass=ModelMeta):
mode='w') as f:
yaml.dump(pipeline_info, f)
# 模型保存成功的标志
# Success flag
open(osp.join(save_dir, '.success'), 'w').close()
logging.info("The inference model for deployment is saved in {}.".
format(save_dir))

@ -25,9 +25,10 @@ import paddle.nn.functional as F
from paddle.static import InputSpec
import paddlers
import paddlers.models.ppseg as ppseg
import paddlers.rs_models.cd as cmcd
import paddlers.utils.logging as logging
import paddlers.models.ppseg as paddleseg
from paddlers.models import seg_losses
from paddlers.transforms import Resize, decode_image
from paddlers.utils import get_single_card_bs, DisablePrint
from paddlers.utils.checkpoint import seg_pretrain_weights_dict
@ -45,6 +46,7 @@ class BaseChangeDetector(BaseModel):
model_name,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
self.init_params = locals()
if 'with_net' in self.init_params:
@ -56,7 +58,7 @@ class BaseChangeDetector(BaseModel):
self.model_name = model_name
self.num_classes = num_classes
self.use_mixed_loss = use_mixed_loss
self.losses = None
self.losses = losses
self.labels = None
if params.get('with_net', True):
params.pop('with_net', None)
@ -144,7 +146,7 @@ class BaseChangeDetector(BaseModel):
origin_shape = [label.shape[-2:]]
pred = self._postprocess(
pred, origin_shape, transforms=inputs[3])[0] # NCHW
intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area(
intersect_area, pred_area, label_area = ppseg.utils.metrics.calculate_area(
pred, label, self.num_classes)
outputs['intersect_area'] = intersect_area
outputs['pred_area'] = pred_area
@ -178,16 +180,13 @@ class BaseChangeDetector(BaseModel):
if isinstance(self.use_mixed_loss, bool):
if self.use_mixed_loss:
losses = [
paddleseg.models.CrossEntropyLoss(),
paddleseg.models.LovaszSoftmaxLoss()
seg_losses.CrossEntropyLoss(),
seg_losses.LovaszSoftmaxLoss()
]
coef = [.8, .2]
loss_type = [
paddleseg.models.MixedLoss(
losses=losses, coef=coef),
]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=coef), ]
else:
loss_type = [paddleseg.models.CrossEntropyLoss()]
loss_type = [seg_losses.CrossEntropyLoss()]
else:
losses, coef = list(zip(*self.use_mixed_loss))
if not set(losses).issubset(
@ -195,11 +194,8 @@ class BaseChangeDetector(BaseModel):
raise ValueError(
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
)
losses = [getattr(paddleseg.models, loss)() for loss in losses]
loss_type = [
paddleseg.models.MixedLoss(
losses=losses, coef=list(coef))
]
losses = [getattr(seg_losses, loss)() for loss in losses]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=list(coef))]
loss_coef = [1.0]
losses = {'types': loss_type, 'coef': loss_coef}
return losses
@ -492,13 +488,13 @@ class BaseChangeDetector(BaseModel):
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
conf_mat_all.append(conf_mat)
class_iou, miou = paddleseg.utils.metrics.mean_iou(
class_iou, miou = ppseg.utils.metrics.mean_iou(
intersect_area_all, pred_area_all, label_area_all)
# TODO 确认是按oacc还是macc
class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all,
pred_area_all)
kappa = paddleseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
label_area_all)
class_acc, oacc = ppseg.utils.metrics.accuracy(intersect_area_all,
pred_area_all)
kappa = ppseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
label_area_all)
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
label_area_all)
@ -643,7 +639,7 @@ class BaseChangeDetector(BaseModel):
int(xoff), int(yoff), xsize, ysize).transpose((1, 2, 0))
im2 = src2_data.ReadAsArray(
int(xoff), int(yoff), xsize, ysize).transpose((1, 2, 0))
# fill
# Fill
h, w = im1.shape[:2]
im1_fill = np.zeros(
(block_size[1], block_size[0], bands), dtype=im1.dtype)
@ -651,10 +647,10 @@ class BaseChangeDetector(BaseModel):
im1_fill[:h, :w, :] = im1
im2_fill[:h, :w, :] = im2
im_fill = (im1_fill, im2_fill)
# predict
# Predict
pred = self.predict(im_fill,
transforms)["label_map"].astype("uint8")
# overlap
# Overlap
rd_block = band.ReadAsArray(int(xoff), int(yoff), xsize, ysize)
mask = (rd_block == pred[:h, :w]) | (rd_block == 255)
temp = pred[:h, :w].copy()
@ -816,11 +812,17 @@ class BaseChangeDetector(BaseModel):
raise TypeError(
"`transforms.arrange` must be an ArrangeChangeDetector object.")
def set_losses(self, losses, weights=None):
if weights is None:
weights = [1. for _ in range(len(losses))]
self.losses = {'types': losses, 'coef': weights}
class CDNet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=6,
**params):
params.update({'in_channels': in_channels})
@ -828,6 +830,7 @@ class CDNet(BaseChangeDetector):
model_name='CDNet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -835,6 +838,7 @@ class FCEarlyFusion(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=6,
use_dropout=False,
**params):
@ -843,6 +847,7 @@ class FCEarlyFusion(BaseChangeDetector):
model_name='FCEarlyFusion',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -850,6 +855,7 @@ class FCSiamConc(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
use_dropout=False,
**params):
@ -858,6 +864,7 @@ class FCSiamConc(BaseChangeDetector):
model_name='FCSiamConc',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -865,6 +872,7 @@ class FCSiamDiff(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
use_dropout=False,
**params):
@ -873,6 +881,7 @@ class FCSiamDiff(BaseChangeDetector):
model_name='FCSiamDiff',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -880,6 +889,7 @@ class STANet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
att_type='BAM',
ds_factor=1,
@ -893,6 +903,7 @@ class STANet(BaseChangeDetector):
model_name='STANet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -900,6 +911,7 @@ class BIT(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
backbone='resnet18',
n_stages=4,
@ -931,6 +943,7 @@ class BIT(BaseChangeDetector):
model_name='BIT',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -938,6 +951,7 @@ class SNUNet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
width=32,
**params):
@ -946,6 +960,7 @@ class SNUNet(BaseChangeDetector):
model_name='SNUNet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -953,6 +968,7 @@ class DSIFN(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
use_dropout=False,
**params):
params.update({'use_dropout': use_dropout})
@ -960,13 +976,14 @@ class DSIFN(BaseChangeDetector):
model_name='DSIFN',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
def default_loss(self):
if self.use_mixed_loss is False:
return {
# XXX: make sure the shallow copy works correctly here.
'types': [paddleseg.models.CrossEntropyLoss()] * 5,
'types': [seg_losses.CrossEntropyLoss()] * 5,
'coef': [1.0] * 5
}
else:
@ -979,6 +996,7 @@ class DSAMNet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
ca_ratio=8,
sa_kernel=7,
@ -992,14 +1010,15 @@ class DSAMNet(BaseChangeDetector):
model_name='DSAMNet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
def default_loss(self):
if self.use_mixed_loss is False:
return {
'types': [
paddleseg.models.CrossEntropyLoss(),
paddleseg.models.DiceLoss(), paddleseg.models.DiceLoss()
seg_losses.CrossEntropyLoss(), seg_losses.DiceLoss(),
seg_losses.DiceLoss()
],
'coef': [1.0, 0.05, 0.05]
}
@ -1013,6 +1032,7 @@ class ChangeStar(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
mid_channels=256,
inner_channels=16,
num_convs=4,
@ -1028,13 +1048,14 @@ class ChangeStar(BaseChangeDetector):
model_name='ChangeStar',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
def default_loss(self):
if self.use_mixed_loss is False:
return {
# XXX: make sure the shallow copy works correctly here.
'types': [paddleseg.models.CrossEntropyLoss()] * 4,
'types': [seglosses.CrossEntropyLoss()] * 4,
'coef': [1.0] * 4
}
else:

@ -22,17 +22,17 @@ import paddle
import paddle.nn.functional as F
from paddle.static import InputSpec
import paddlers.models.ppcls as paddleclas
import paddlers.rs_models.clas as cmcls
import paddlers
from paddlers.utils import get_single_card_bs, DisablePrint
import paddlers.models.ppcls as ppcls
import paddlers.rs_models.clas as cmcls
import paddlers.utils.logging as logging
from .base import BaseModel
from paddlers.utils import get_single_card_bs, DisablePrint
from paddlers.models.ppcls.metric import build_metrics
from paddlers.models.ppcls.loss import build_loss
from paddlers.models import clas_losses
from paddlers.models.ppcls.data.postprocess import build_postprocess
from paddlers.utils.checkpoint import cls_pretrain_weights_dict
from paddlers.transforms import Resize, decode_image
from .base import BaseModel
__all__ = [
"ResNet50_vd", "MobileNetV3_small_x1_0", "HRNet_W18_C", "CondenseNetV2_b"
@ -45,12 +45,13 @@ class BaseClassifier(BaseModel):
in_channels=3,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
self.init_params = locals()
if 'with_net' in self.init_params:
del self.init_params['with_net']
super(BaseClassifier, self).__init__('classifier')
if not hasattr(paddleclas.arch.backbone, model_name) and \
if not hasattr(ppcls.arch.backbone, model_name) and \
not hasattr(cmcls, model_name):
raise ValueError("ERROR: There is no model named {}.".format(
model_name))
@ -59,7 +60,7 @@ class BaseClassifier(BaseModel):
self.num_classes = num_classes
self.use_mixed_loss = use_mixed_loss
self.metrics = None
self.losses = None
self.losses = losses
self.labels = None
self._postprocess = None
if params.get('with_net', True):
@ -69,7 +70,7 @@ class BaseClassifier(BaseModel):
def build_net(self, **params):
with paddle.utils.unique_name.guard():
model = dict(paddleclas.arch.backbone.__dict__,
model = dict(ppcls.arch.backbone.__dict__,
**cmcls.__dict__)[self.model_name]
# TODO: Determine whether there is in_channels
try:
@ -145,7 +146,7 @@ class BaseClassifier(BaseModel):
def default_loss(self):
# TODO: use mixed loss and other loss
default_config = [{"CELoss": {"weight": 1.0}}]
return build_loss(default_config)
return clas_losses.build_loss(default_config)
def default_optimizer(self,
parameters,
@ -556,36 +557,56 @@ class BaseClassifier(BaseModel):
class ResNet50_vd(BaseClassifier):
def __init__(self, num_classes=2, use_mixed_loss=False, **params):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(ResNet50_vd, self).__init__(
model_name='ResNet50_vd',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class MobileNetV3_small_x1_0(BaseClassifier):
def __init__(self, num_classes=2, use_mixed_loss=False, **params):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(MobileNetV3_small_x1_0, self).__init__(
model_name='MobileNetV3_small_x1_0',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class HRNet_W18_C(BaseClassifier):
def __init__(self, num_classes=2, use_mixed_loss=False, **params):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(HRNet_W18_C, self).__init__(
model_name='HRNet_W18_C',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class CondenseNetV2_b(BaseClassifier):
def __init__(self, num_classes=2, use_mixed_loss=False, **params):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(CondenseNetV2_b, self).__init__(
model_name='CondenseNetV2_b',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)

@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import collections
import copy
import os
@ -23,18 +21,18 @@ import numpy as np
import paddle
from paddle.static import InputSpec
import paddlers
import paddlers.models.ppdet as ppdet
from paddlers.models.ppdet.modeling.proposal_generator.target_layer import BBoxAssigner, MaskAssigner
import paddlers
import paddlers.utils.logging as logging
from paddlers.transforms import decode_image
from paddlers.transforms.operators import _NormalizeBox, _PadBox, _BboxXYXY2XYWH, Resize, Pad
from paddlers.transforms.batch_operators import BatchCompose, BatchRandomResize, BatchRandomResizeByShort, \
_BatchPad, _Gt2YoloTarget
from .base import BaseModel
from .utils.det_metrics import VOCMetric, COCOMetric
from paddlers.models.ppdet.optimizer import ModelEMA
import paddlers.utils.logging as logging
from paddlers.utils.checkpoint import det_pretrain_weights_dict
from .base import BaseModel
from .utils.det_metrics import VOCMetric, COCOMetric
__all__ = [
"YOLOv3", "FasterRCNN", "PPYOLO", "PPYOLOTiny", "PPYOLOv2", "MaskRCNN"
@ -291,7 +289,7 @@ class BaseDetector(BaseModel):
train_dataset.batch_transforms = self._compose_batch_transform(
train_dataset.transforms, mode='train')
# build optimizer if not defined
# Build optimizer if not defined
if optimizer is None:
num_steps_each_epoch = len(train_dataset) // train_batch_size
self.optimizer = self.default_optimizer(
@ -305,7 +303,7 @@ class BaseDetector(BaseModel):
else:
self.optimizer = optimizer
# initiate weights
# Initiate weights
if pretrain_weights is not None and not osp.exists(pretrain_weights):
if pretrain_weights not in det_pretrain_weights_dict['_'.join(
[self.model_name, self.backbone_name])]:
@ -335,7 +333,7 @@ class BaseDetector(BaseModel):
ema = ModelEMA(model=self.net, decay=.9998, use_thres_step=True)
else:
ema = None
# start train loop
# Start train loop
self.train_loop(
num_epochs=num_epochs,
train_dataset=train_dataset,
@ -822,7 +820,7 @@ class PicoDet(BaseDetector):
if isinstance(op, (BatchRandomResize, BatchRandomResizeByShort)):
if mode != 'train':
raise ValueError(
"{} cannot be present in the {} transforms. ".format(
"{} cannot be present in the {} transforms.".format(
op.__class__.__name__, mode) +
"Please check the {} transforms.".format(mode))
custom_batch_transforms.insert(0, copy.deepcopy(op))

@ -23,15 +23,16 @@ import paddle
import paddle.nn.functional as F
from paddle.static import InputSpec
import paddlers.models.ppseg as paddleseg
import paddlers.rs_models.seg as cmseg
import paddlers
from paddlers.utils import get_single_card_bs, DisablePrint
import paddlers.models.ppseg as ppseg
import paddlers.rs_models.seg as cmseg
import paddlers.utils.logging as logging
from paddlers.models import seg_losses
from paddlers.transforms import Resize, decode_image
from paddlers.utils import get_single_card_bs, DisablePrint
from paddlers.utils.checkpoint import seg_pretrain_weights_dict
from .base import BaseModel
from .utils import seg_metrics as metrics
from paddlers.utils.checkpoint import seg_pretrain_weights_dict
from paddlers.transforms import Resize, decode_image
__all__ = ["UNet", "DeepLabV3P", "FastSCNN", "HRNet", "BiSeNetV2", "FarSeg"]
@ -41,19 +42,20 @@ class BaseSegmenter(BaseModel):
model_name,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
self.init_params = locals()
if 'with_net' in self.init_params:
del self.init_params['with_net']
super(BaseSegmenter, self).__init__('segmenter')
if not hasattr(paddleseg.models, model_name) and \
if not hasattr(ppseg.models, model_name) and \
not hasattr(cmseg, model_name):
raise ValueError("ERROR: There is no model named {}.".format(
model_name))
self.model_name = model_name
self.num_classes = num_classes
self.use_mixed_loss = use_mixed_loss
self.losses = None
self.losses = losses
self.labels = None
if params.get('with_net', True):
params.pop('with_net', None)
@ -63,9 +65,8 @@ class BaseSegmenter(BaseModel):
def build_net(self, **params):
# TODO: when using paddle.utils.unique_name.guard,
# DeepLabv3p and HRNet will raise a error
net = dict(paddleseg.models.__dict__,
**cmseg.__dict__)[self.model_name](
num_classes=self.num_classes, **params)
net = dict(ppseg.models.__dict__, **cmseg.__dict__)[self.model_name](
num_classes=self.num_classes, **params)
return net
def _fix_transforms_shape(self, image_shape):
@ -143,7 +144,7 @@ class BaseSegmenter(BaseModel):
origin_shape = [label.shape[-2:]]
pred = self._postprocess(
pred, origin_shape, transforms=inputs[2])[0] # NCHW
intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area(
intersect_area, pred_area, label_area = ppseg.utils.metrics.calculate_area(
pred, label, self.num_classes)
outputs['intersect_area'] = intersect_area
outputs['pred_area'] = pred_area
@ -161,16 +162,13 @@ class BaseSegmenter(BaseModel):
if isinstance(self.use_mixed_loss, bool):
if self.use_mixed_loss:
losses = [
paddleseg.models.CrossEntropyLoss(),
paddleseg.models.LovaszSoftmaxLoss()
seg_losses.CrossEntropyLoss(),
seg_losses.LovaszSoftmaxLoss()
]
coef = [.8, .2]
loss_type = [
paddleseg.models.MixedLoss(
losses=losses, coef=coef),
]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=coef), ]
else:
loss_type = [paddleseg.models.CrossEntropyLoss()]
loss_type = [seg_losses.CrossEntropyLoss()]
else:
losses, coef = list(zip(*self.use_mixed_loss))
if not set(losses).issubset(
@ -178,11 +176,8 @@ class BaseSegmenter(BaseModel):
raise ValueError(
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
)
losses = [getattr(paddleseg.models, loss)() for loss in losses]
loss_type = [
paddleseg.models.MixedLoss(
losses=losses, coef=list(coef))
]
losses = [getattr(seg_losses, loss)() for loss in losses]
loss_type = [seg_losses.MixedLoss(losses=losses, coef=list(coef))]
if self.model_name == 'FastSCNN':
loss_type *= 2
loss_coef = [1.0, 0.4]
@ -475,13 +470,13 @@ class BaseSegmenter(BaseModel):
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
conf_mat_all.append(conf_mat)
class_iou, miou = paddleseg.utils.metrics.mean_iou(
class_iou, miou = ppseg.utils.metrics.mean_iou(
intersect_area_all, pred_area_all, label_area_all)
# TODO 确认是按oacc还是macc
class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all,
pred_area_all)
kappa = paddleseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
label_area_all)
class_acc, oacc = ppseg.utils.metrics.accuracy(intersect_area_all,
pred_area_all)
kappa = ppseg.utils.metrics.kappa(intersect_area_all, pred_area_all,
label_area_all)
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
label_area_all)
eval_metrics = OrderedDict(
@ -613,15 +608,15 @@ class BaseSegmenter(BaseModel):
ysize = int(height - yoff)
im = src_data.ReadAsArray(int(xoff), int(yoff), xsize,
ysize).transpose((1, 2, 0))
# fill
# Fill
h, w = im.shape[:2]
im_fill = np.zeros(
(block_size[1], block_size[0], bands), dtype=im.dtype)
im_fill[:h, :w, :] = im
# predict
# Predict
pred = self.predict(im_fill,
transforms)["label_map"].astype("uint8")
# overlap
# Overlap
rd_block = band.ReadAsArray(int(xoff), int(yoff), xsize, ysize)
mask = (rd_block == pred[:h, :w]) | (rd_block == 255)
temp = pred[:h, :w].copy()
@ -778,12 +773,18 @@ class BaseSegmenter(BaseModel):
raise TypeError(
"`transforms.arrange` must be an ArrangeSegmenter object.")
def set_losses(self, losses, weights=None):
if weights is None:
weights = [1. for _ in range(len(losses))]
self.losses = {'types': losses, 'coef': weights}
class UNet(BaseSegmenter):
def __init__(self,
input_channel=3,
num_classes=2,
use_mixed_loss=False,
losses=None,
use_deconv=False,
align_corners=False,
**params):
@ -796,6 +797,7 @@ class UNet(BaseSegmenter):
input_channel=input_channel,
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -805,6 +807,7 @@ class DeepLabV3P(BaseSegmenter):
num_classes=2,
backbone='ResNet50_vd',
use_mixed_loss=False,
losses=None,
output_stride=8,
backbone_indices=(0, 3),
aspp_ratios=(1, 12, 24, 36),
@ -818,7 +821,7 @@ class DeepLabV3P(BaseSegmenter):
"{'ResNet50_vd', 'ResNet101_vd'}.".format(backbone))
if params.get('with_net', True):
with DisablePrint():
backbone = getattr(paddleseg.models, backbone)(
backbone = getattr(ppseg.models, backbone)(
input_channel=input_channel, output_stride=output_stride)
else:
backbone = None
@ -833,6 +836,7 @@ class DeepLabV3P(BaseSegmenter):
model_name='DeepLabV3P',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -840,6 +844,7 @@ class FastSCNN(BaseSegmenter):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
align_corners=False,
**params):
params.update({'align_corners': align_corners})
@ -847,6 +852,7 @@ class FastSCNN(BaseSegmenter):
model_name='FastSCNN',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
@ -855,6 +861,7 @@ class HRNet(BaseSegmenter):
num_classes=2,
width=48,
use_mixed_loss=False,
losses=None,
align_corners=False,
**params):
if width not in (18, 48):
@ -864,7 +871,7 @@ class HRNet(BaseSegmenter):
self.backbone_name = 'HRNet_W{}'.format(width)
if params.get('with_net', True):
with DisablePrint():
backbone = getattr(paddleseg.models, self.backbone_name)(
backbone = getattr(ppseg.models, self.backbone_name)(
align_corners=align_corners)
else:
backbone = None
@ -874,6 +881,7 @@ class HRNet(BaseSegmenter):
model_name='FCN',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
self.model_name = 'HRNet'
@ -882,6 +890,7 @@ class BiSeNetV2(BaseSegmenter):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
align_corners=False,
**params):
params.update({'align_corners': align_corners})
@ -889,13 +898,19 @@ class BiSeNetV2(BaseSegmenter):
model_name='BiSeNetV2',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class FarSeg(BaseSegmenter):
def __init__(self, num_classes=2, use_mixed_loss=False, **params):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(FarSeg, self).__init__(
model_name='FarSeg',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)

@ -142,20 +142,19 @@ def cocoapi_eval(anns,
logging.info('Per-category of {} AP: \n{}'.format(style, table.table))
logging.info("per-category PR curve has output to {} folder.".format(
style + '_pr_curve'))
# flush coco evaluation result
# Flush coco evaluation result
sys.stdout.flush()
return coco_eval.stats
def loadRes(coco_obj, anns):
# This function has the same functionality as pycocotools.COCO.loadRes,
# except that the input anns is list of results rather than a json file.
# excepting that the input anns is list of results rather than a json file.
# Refer to
# https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/coco.py#L305,
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
# or matplotlib.backends is imported for the first time
# pycocotools import matplotlib
# or matplotlib.backends is imported for the first time.
import matplotlib
matplotlib.use('Agg')
from pycocotools.coco import COCO
@ -192,7 +191,7 @@ def loadRes(coco_obj, anns):
res.dataset['categories'] = copy.deepcopy(coco_obj.dataset[
'categories'])
for id, ann in enumerate(anns):
# now only support compressed RLE format as segmentation results
# Now only supports compressed RLE format as segmentation results.
ann['area'] = maskUtils.area(ann['segmentation'])
if not 'bbox' in ann:
ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
@ -291,8 +290,7 @@ def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type, areas=None):
"""
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
# or matplotlib.backends is imported for the first time
# pycocotools import matplotlib
# or matplotlib.backends is imported for the first time.
import matplotlib
matplotlib.use('Agg')
from pycocotools.coco import COCO
@ -311,7 +309,7 @@ def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type, areas=None):
select_dt_anns.append(ann)
dt.dataset['annotations'] = select_dt_anns
dt.createIndex()
# compute precision but ignore superclass confusion
# Compute precision but ignore superclass confusion.
gt = copy.deepcopy(cocoGt)
child_catIds = gt.getCatIds(supNms=[nm['supercategory']])
for idx, ann in enumerate(gt.dataset['annotations']):
@ -379,8 +377,7 @@ def coco_error_analysis(eval_details_file=None,
import multiprocessing as mp
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
# or matplotlib.backends is imported for the first time
# pycocotools import matplotlib
# or matplotlib.backends is imported for the first time.
import matplotlib
matplotlib.use('Agg')
from pycocotools.coco import COCO
@ -446,11 +443,11 @@ def coco_error_analysis(eval_details_file=None,
assert k == analyze_result[0], ""
ps_supercategory = analyze_result[1]['ps_supercategory']
ps_allcategory = analyze_result[1]['ps_allcategory']
# compute precision but ignore superclass confusion
# Compute precision but ignore superclass confusion.
ps[3, :, k, :, :] = ps_supercategory
# compute precision but ignore any class confusion
# Compute precision but ignore any class confusion.
ps[4, :, k, :, :] = ps_allcategory
# fill in background and false negative errors and plot
# Fill in background and false negative errors and plot.
ps[ps == -1] = 0
ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0
ps[6, :, k, :, :] = 1.0

@ -41,11 +41,11 @@ class Metric(paddle.metric.Metric):
# paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
# :metch:`reset`, in ppdet, we also need following 2 methods:
# abstract method for logging metric results
# Abstract method for logging metric results
def log(self):
pass
# abstract method for getting metric results
# Abstract method for getting metric results
def get_results(self):
pass
@ -162,7 +162,7 @@ class COCOMetric(Metric):
self.reset()
def reset(self):
# only bbox and mask evaluation support currently
# Only bbox and mask evaluation are supported currently.
self.details = {
'gt': copy.deepcopy(self.coco_gt.dataset),
'bbox': [],
@ -172,7 +172,7 @@ class COCOMetric(Metric):
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
# Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

@ -309,7 +309,7 @@ def draw_pr_curve(eval_details_file=None,
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
# Dimension of precision: [TxRxKxAxM]
s = coco_gt.eval['precision']
# IoU
if iouThr is not None:
@ -317,7 +317,7 @@ def draw_pr_curve(eval_details_file=None,
s = s[t]
s = s[:, :, :, aind, mind]
else:
# dimension of recall: [TxKxAxM]
# Dimension of recall: [TxKxAxM]
s = coco_gt.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]

@ -229,7 +229,7 @@ class _Gt2YoloTarget(Transform):
if gw <= 0. or gh <= 0. or score <= 0.:
continue
# find best match anchor index
# Find best matched anchor index
best_iou = 0.
best_idx = -1
for an_idx in range(an_hw.shape[0]):
@ -243,8 +243,8 @@ class _Gt2YoloTarget(Transform):
gi = int(gx * grid_w)
gj = int(gy * grid_h)
# gtbox should be regresed in this layes if best match
# anchor index in anchor mask of this layer
# gtbox should be regressed in this layer if best matched
# anchor index is in the anchor mask of this layer.
if best_idx in mask:
best_n = mask.index(best_idx)
@ -257,14 +257,14 @@ class _Gt2YoloTarget(Transform):
gh * h / self.anchors[best_idx][1])
target[best_n, 4, gj, gi] = 2.0 - gw * gh
# objectness record gt_score
# Record gt_score
target[best_n, 5, gj, gi] = score
# classification
# Do classification
target[best_n, 6 + cls, gj, gi] = 1.
# For non-matched anchors, calculate the target if the iou
# between anchor and gt is larger than iou_thresh
# between anchor and gt is larger than iou_thresh.
if self.iou_thresh < 1:
for idx, mask_i in enumerate(mask):
if mask_i == best_idx: continue
@ -282,14 +282,14 @@ class _Gt2YoloTarget(Transform):
gh * h / self.anchors[mask_i][1])
target[idx, 4, gj, gi] = 2.0 - gw * gh
# objectness record gt_score
# Record gt_score
target[idx, 5, gj, gi] = score
# classification
# Do classification
target[idx, 5 + cls, gj, gi] = 1.
sample['target{}'.format(i)] = target
# remove useless gt_class and gt_score after target calculated
# Remove useless gt_class and gt_score items after target has been calculated.
sample.pop('gt_class')
sample.pop('gt_score')

@ -55,7 +55,6 @@ def center_crop(im, crop_size=224):
return im
# region flip
def img_flip(im, method=0):
"""
Flip an image.
@ -168,10 +167,6 @@ def lt2rb_flip(im):
return im
# endregion
# region rotation
def img_simple_rotate(im, method=0):
"""
Rotate an image.
@ -255,9 +250,6 @@ def rot_270(im):
return im
# endregion
def rgb2bgr(im):
return im[:, :, ::-1]
@ -405,7 +397,7 @@ def to_uint8(im, is_linear=False):
# 2% linear stretch
def _two_percent_linear(image, max_out=255, min_out=0):
def _gray_process(gray, maxout=max_out, minout=min_out):
# get the corresponding gray level at 98% histogram
# Get the corresponding gray level at 98% in the histogram.
high_value = np.percentile(gray, 98)
low_value = np.percentile(gray, 2)
truncated_gray = np.clip(gray, a_min=low_value, a_max=high_value)
@ -422,7 +414,7 @@ def to_uint8(im, is_linear=False):
result = _gray_process(image)
return np.uint8(result)
# simple image standardization
# Simple image standardization
def _sample_norm(image):
stretches = []
if len(image.shape) == 3:
@ -456,7 +448,7 @@ def to_intensity(im):
if len(im.shape) != 2:
raise ValueError("`len(im.shape) must be 2.")
# the type is complex means this is a SAR data
# If the type is complex, this is SAR data.
if isinstance(type(im[0, 0]), complex):
im = abs(im)
return im
@ -475,7 +467,7 @@ def select_bands(im, band_list=[1, 2, 3]):
np.ndarray: Image with selected bands.
"""
if len(im.shape) == 2: # just have one channel
if len(im.shape) == 2: # Image has only one channel
return im
if not isinstance(band_list, list) or len(band_list) == 0:
raise TypeError("band_list must be non empty list.")
@ -517,7 +509,7 @@ def dehaze(im, gamma=False):
return m_a * I + m_b
def _dehaze(im, r, w, maxatmo_mask, eps):
# im is RGB and range[0, 1]
# im is a RGB image and the value ranges in [0, 1].
atmo_mask = np.min(im, 2)
dark_channel = cv2.erode(atmo_mask, np.ones((15, 15)))
atmo_mask = _guided_filter(atmo_mask, dark_channel, r, eps)

@ -212,7 +212,7 @@ class DecodeImg(Transform):
raise IOError('Can not open', img_path)
im_data = dataset.ReadAsArray()
if im_data.ndim == 2 and self.decode_sar:
im_data = to_intensity(im_data) # is read SAR
im_data = to_intensity(im_data)
im_data = im_data[:, :, np.newaxis]
else:
if im_data.ndim == 3:
@ -1376,7 +1376,7 @@ class MixupImage(Transform):
image = self.apply_im(sample[0]['image'], sample[1]['image'], factor)
result = copy.deepcopy(sample[0])
result['image'] = image
# apply bbox and score
# Apply bbox and score
if 'gt_bbox' in sample[0]:
gt_bbox1 = sample[0]['gt_bbox']
gt_bbox2 = sample[1]['gt_bbox']
@ -1469,7 +1469,7 @@ class RandomDistort(Transform):
if np.random.uniform(0., 1.) < self.hue_prob:
return image
# it works, but result differ from HSV version
# It works, but the result differs from HSV version.
delta = np.random.uniform(low, high)
u = np.cos(delta * np.pi)
w = np.sin(delta * np.pi)
@ -1505,7 +1505,7 @@ class RandomDistort(Transform):
for i in range(channel // 3):
sub_img = image[:, :, 3 * i:3 * (i + 1)]
sub_img = sub_img.astype(np.float32)
# it works, but result differ from HSV version
# It works, but the result differs from HSV version.
gray = sub_img * np.array(
[[[0.299, 0.587, 0.114]]], dtype=np.float32)
gray = gray.sum(axis=2, keepdims=True)
@ -1720,9 +1720,9 @@ class _PadBox(Transform):
if gt_num > 0:
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
sample['gt_score'] = pad_score
# in training, for example in op ExpandImage,
# the bbox and gt_class is expanded, but the difficult is not,
# so, judging by it's length
# In training, for example in op ExpandImage,
# bbox and gt_class are expanded, but difficult is not,
# so judge by its length.
if 'difficult' in sample:
pad_diff = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:

@ -441,7 +441,7 @@ def load_pretrain_weights(model, pretrain_weights=None, model_name=None):
if os.path.exists(pretrain_weights):
param_state_dict = paddle.load(pretrain_weights)
model_state_dict = model.state_dict()
# hack: fit for faster rcnn. Pretrain weights contain prefix of 'backbone'
# HACK: Fit for faster rcnn. Pretrain weights contain prefix of 'backbone'
# while res5 module is located in bbox_head.head. Replace the prefix of
# res5 with 'bbox_head.head' to load pretrain weights correctly.
for k in param_state_dict.keys():

@ -98,7 +98,7 @@ def download(url, path, md5sum=None):
# For protecting download interupted, download to
# tmp_fullname firstly, move tmp_fullname to fullname
# after download finished
# after download finished.
tmp_fullname = fullname + "_tmp"
total_size = req.headers.get('content-length')
with open(tmp_fullname, 'wb') as f:
@ -181,8 +181,7 @@ def download_and_decompress(url, path='.'):
local_rank = paddle.distributed.get_rank()
fname = osp.split(url)[-1]
fullname = osp.join(path, fname)
# if url.endswith(('tgz', 'tar.gz', 'tar', 'zip')):
# fullname = osp.join(path, fname.split('.')[0])
if nranks <= 1:
dst_dir = url2dir(url, path)
if dst_dir is not None:

@ -154,9 +154,9 @@ class DisablePrint(object):
class Times(object):
def __init__(self):
self.time = 0.
# start time
# Start time
self.st = 0.
# end time
# End time
self.et = 0.
def start(self):

@ -82,7 +82,7 @@ class _CommonTestNamespace:
def wrapper(self, *args, **kwargs):
with warnings.catch_warnings(record=True) as w:
warnings.resetwarnings()
# ignore specified warnings
# Ignore specified warnings
warning_white_list = [UserWarning]
for warning in warning_white_list:
warnings.simplefilter("ignore", warning)

@ -96,7 +96,7 @@ def convert_data(raw_dir, end_dir):
shutil.copy(img_path, img_save_path)
if k in anns.keys():
_save_mask(anns[k], sizes[k], lab_save_path)
else: # have not anns
else:
_save_palette(np.zeros(sizes[k], dtype="uint8"), \
lab_save_path)

@ -166,7 +166,7 @@ def get_args():
parser = argparse.ArgumentParser(
description='Json Images Infomation Statistic')
# parameters
# Parameters
parser.add_argument(
'--json_path',
type=str,

@ -63,7 +63,7 @@ def js_test(test_image_path, js_train_path, js_test_path, image_keyname,
def get_args():
parser = argparse.ArgumentParser(description='Get Test Json')
# parameters
# Parameters
parser.add_argument('--test_image_path', type=str, help='test image path')
parser.add_argument(
'--json_train_path',

@ -74,7 +74,7 @@ def get_args():
parser = argparse.ArgumentParser(
description='Json Images Infomation Statistic')
# parameters
# Parameters
parser.add_argument(
'--json_path',
type=str,

@ -51,7 +51,7 @@ def js_show(js_path, show_num):
def get_args():
parser = argparse.ArgumentParser(description='Json Infomation Show')
# parameters
# Parameters
parser.add_argument(
'--json_path', type=str, help='json path to show information')
parser.add_argument(

@ -56,7 +56,7 @@ def js_merge(js1_path, js2_path, js_merge_path, merge_keys):
def get_args():
parser = argparse.ArgumentParser(description='Json Merge')
# parameters
# Parameters
parser.add_argument('--json1_path', type=str, help='json path1 to merge')
parser.add_argument('--json2_path', type=str, help='json path2 to merge')
parser.add_argument(

@ -87,7 +87,7 @@ def js_split(js_all_path, js_train_path, js_val_path, val_split_rate,
def get_args():
parser = argparse.ArgumentParser(description='Json Merge')
# parameters
# Parameters
parser.add_argument('--json_all_path', type=str, help='json path to split')
parser.add_argument(
'--json_train_path',

@ -25,7 +25,8 @@ from utils import Raster, save_geotiff, translate_vector, time_it
def _gt_convert(x_geo, y_geo, geotf):
a = np.array([[geotf[1], geotf[2]], [geotf[4], geotf[5]]])
b = np.array([x_geo - geotf[0], y_geo - geotf[3]])
return np.round(np.linalg.solve(a, b)).tolist() # 解一元二次方程
return np.round(np.linalg.solve(a,
b)).tolist() # Solve a quadratic equation
@time_it
@ -36,13 +37,13 @@ def convert_data(image_path, geojson_path):
# vector to EPSG from raster
temp_geojson_path = translate_vector(geojson_path, raster.proj)
geo_reader = codecs.open(temp_geojson_path, "r", encoding="utf-8")
feats = geojson.loads(geo_reader.read())["features"] # 所有图像块
feats = geojson.loads(geo_reader.read())["features"] # All image patches
geo_reader.close()
for feat in tqdm(feats):
geo = feat["geometry"]
if geo["type"] == "Polygon": # 多边形
if geo["type"] == "Polygon":
geo_points = geo["coordinates"][0]
elif geo["type"] == "MultiPolygon": # 多面
elif geo["type"] == "MultiPolygon":
geo_points = geo["coordinates"][0][0]
else:
raise TypeError(
@ -52,7 +53,7 @@ def convert_data(image_path, geojson_path):
_gt_convert(point[0], point[1], raster.geot) for point in geo_points
]).astype(np.int32)
# TODO: Label category
cv2.fillPoly(tmp_img, [xy_points], 1) # 多边形填充
cv2.fillPoly(tmp_img, [xy_points], 1) # Fill with polygons
ext = "." + geojson_path.split(".")[-1]
save_geotiff(tmp_img,
geojson_path.replace(ext, ".tif"), raster.proj, raster.geot)

@ -14,7 +14,7 @@
import sys
import os.path as osp
sys.path.insert(0, osp.abspath("..")) # add workspace
sys.path.insert(0, osp.abspath("..")) # Add workspace
from .raster import Raster, raster2uint8, save_geotiff
from .vector import translate_vector

Loading…
Cancel
Save