parent
32babb3418
commit
6932bf6e16
4 changed files with 488 additions and 2 deletions
@ -0,0 +1,224 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
import paddle.nn.functional as F |
||||
|
||||
|
||||
from .layers import Conv3x3, MaxPool2x2, ConvTransposed3x3, Identity |
||||
from .param_init import normal_init, constant_init |
||||
|
||||
|
||||
class UNetSiamConc(nn.Layer): |
||||
""" |
||||
The FC-Siam-conc implementation based on PaddlePaddle. |
||||
|
||||
The original article refers to |
||||
Caye Daudt, R., et al. "Fully convolutional siamese networks for change detection" |
||||
(https://arxiv.org/abs/1810.08462) |
||||
|
||||
Args: |
||||
in_channels (int): The number of bands of the input images. |
||||
num_classes (int): The number of target classes. |
||||
use_dropout (bool, optional): A bool value that indicates whether to use dropout layers. |
||||
When the model is trained on a relatively small dataset, the dropout layers help prevent |
||||
overfitting. Default: False. |
||||
""" |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
num_classes, |
||||
use_dropout=False |
||||
): |
||||
super().__init__() |
||||
|
||||
C1, C2, C3, C4, C5 = 16, 32, 64, 128, 256 |
||||
|
||||
self.use_dropout = use_dropout |
||||
|
||||
self.conv11 = Conv3x3(in_channels, C1, norm=True, act=True) |
||||
self.do11 = self._make_dropout() |
||||
self.conv12 = Conv3x3(C1, C1, norm=True, act=True) |
||||
self.do12 = self._make_dropout() |
||||
self.pool1 = MaxPool2x2() |
||||
|
||||
self.conv21 = Conv3x3(C1, C2, norm=True, act=True) |
||||
self.do21 = self._make_dropout() |
||||
self.conv22 = Conv3x3(C2, C2, norm=True, act=True) |
||||
self.do22 = self._make_dropout() |
||||
self.pool2 = MaxPool2x2() |
||||
|
||||
self.conv31 = Conv3x3(C2, C3, norm=True, act=True) |
||||
self.do31 = self._make_dropout() |
||||
self.conv32 = Conv3x3(C3, C3, norm=True, act=True) |
||||
self.do32 = self._make_dropout() |
||||
self.conv33 = Conv3x3(C3, C3, norm=True, act=True) |
||||
self.do33 = self._make_dropout() |
||||
self.pool3 = MaxPool2x2() |
||||
|
||||
self.conv41 = Conv3x3(C3, C4, norm=True, act=True) |
||||
self.do41 = self._make_dropout() |
||||
self.conv42 = Conv3x3(C4, C4, norm=True, act=True) |
||||
self.do42 = self._make_dropout() |
||||
self.conv43 = Conv3x3(C4, C4, norm=True, act=True) |
||||
self.do43 = self._make_dropout() |
||||
self.pool4 = MaxPool2x2() |
||||
|
||||
self.upconv4 = ConvTransposed3x3(C4, C4, output_padding=1) |
||||
|
||||
self.conv43d = Conv3x3(C5+C4, C4, norm=True, act=True) |
||||
self.do43d = self._make_dropout() |
||||
self.conv42d = Conv3x3(C4, C4, norm=True, act=True) |
||||
self.do42d = self._make_dropout() |
||||
self.conv41d = Conv3x3(C4, C3, norm=True, act=True) |
||||
self.do41d = self._make_dropout() |
||||
|
||||
self.upconv3 = ConvTransposed3x3(C3, C3, output_padding=1) |
||||
|
||||
self.conv33d = Conv3x3(C4+C3, C3, norm=True, act=True) |
||||
self.do33d = self._make_dropout() |
||||
self.conv32d = Conv3x3(C3, C3, norm=True, act=True) |
||||
self.do32d = self._make_dropout() |
||||
self.conv31d = Conv3x3(C3, C2, norm=True, act=True) |
||||
self.do31d = self._make_dropout() |
||||
|
||||
self.upconv2 = ConvTransposed3x3(C2, C2, output_padding=1) |
||||
|
||||
self.conv22d = Conv3x3(C3+C2, C2, norm=True, act=True) |
||||
self.do22d = self._make_dropout() |
||||
self.conv21d = Conv3x3(C2, C1, norm=True, act=True) |
||||
self.do21d = self._make_dropout() |
||||
|
||||
self.upconv1 = ConvTransposed3x3(C1, C1, output_padding=1) |
||||
|
||||
self.conv12d = Conv3x3(C2+C1, C1, norm=True, act=True) |
||||
self.do12d = self._make_dropout() |
||||
self.conv11d = Conv3x3(C1, num_classes) |
||||
|
||||
self.init_weight() |
||||
|
||||
def forward(self, t1, t2): |
||||
# Encode t1 |
||||
# Stage 1 |
||||
x11 = self.do11(self.conv11(t1)) |
||||
x12_1 = self.do12(self.conv12(x11)) |
||||
x1p = self.pool1(x12_1) |
||||
|
||||
# Stage 2 |
||||
x21 = self.do21(self.conv21(x1p)) |
||||
x22_1 = self.do22(self.conv22(x21)) |
||||
x2p = self.pool2(x22_1) |
||||
|
||||
# Stage 3 |
||||
x31 = self.do31(self.conv31(x2p)) |
||||
x32 = self.do32(self.conv32(x31)) |
||||
x33_1 = self.do33(self.conv33(x32)) |
||||
x3p = self.pool3(x33_1) |
||||
|
||||
# Stage 4 |
||||
x41 = self.do41(self.conv41(x3p)) |
||||
x42 = self.do42(self.conv42(x41)) |
||||
x43_1 = self.do43(self.conv43(x42)) |
||||
x4p = self.pool4(x43_1) |
||||
|
||||
# Encode t2 |
||||
# Stage 1 |
||||
x11 = self.do11(self.conv11(t2)) |
||||
x12_2 = self.do12(self.conv12(x11)) |
||||
x1p = self.pool1(x12_2) |
||||
|
||||
# Stage 2 |
||||
x21 = self.do21(self.conv21(x1p)) |
||||
x22_2 = self.do22(self.conv22(x21)) |
||||
x2p = self.pool2(x22_2) |
||||
|
||||
# Stage 3 |
||||
x31 = self.do31(self.conv31(x2p)) |
||||
x32 = self.do32(self.conv32(x31)) |
||||
x33_2 = self.do33(self.conv33(x32)) |
||||
x3p = self.pool3(x33_2) |
||||
|
||||
# Stage 4 |
||||
x41 = self.do41(self.conv41(x3p)) |
||||
x42 = self.do42(self.conv42(x41)) |
||||
x43_2 = self.do43(self.conv43(x42)) |
||||
x4p = self.pool4(x43_2) |
||||
|
||||
# Decode |
||||
# Stage 4d |
||||
x4d = self.upconv4(x4p) |
||||
pad4 = ( |
||||
0, |
||||
paddle.shape(x43_1)[3]-paddle.shape(x4d)[3], |
||||
0, |
||||
paddle.shape(x43_1)[2]-paddle.shape(x4d)[2] |
||||
) |
||||
x4d = paddle.concat([F.pad(x4d, pad=pad4, mode='replicate'), x43_1, x43_2], 1) |
||||
x43d = self.do43d(self.conv43d(x4d)) |
||||
x42d = self.do42d(self.conv42d(x43d)) |
||||
x41d = self.do41d(self.conv41d(x42d)) |
||||
|
||||
# Stage 3d |
||||
x3d = self.upconv3(x41d) |
||||
pad3 = ( |
||||
0, |
||||
paddle.shape(x33_1)[3]-paddle.shape(x3d)[3], |
||||
0, |
||||
paddle.shape(x33_1)[2]-paddle.shape(x3d)[2] |
||||
) |
||||
x3d = paddle.concat([F.pad(x3d, pad=pad3, mode='replicate'), x33_1, x33_2], 1) |
||||
x33d = self.do33d(self.conv33d(x3d)) |
||||
x32d = self.do32d(self.conv32d(x33d)) |
||||
x31d = self.do31d(self.conv31d(x32d)) |
||||
|
||||
# Stage 2d |
||||
x2d = self.upconv2(x31d) |
||||
pad2 = ( |
||||
0, |
||||
paddle.shape(x22_1)[3]-paddle.shape(x2d)[3], |
||||
0, |
||||
paddle.shape(x22_1)[2]-paddle.shape(x2d)[2] |
||||
) |
||||
x2d = paddle.concat([F.pad(x2d, pad=pad2, mode='replicate'), x22_1, x22_2], 1) |
||||
x22d = self.do22d(self.conv22d(x2d)) |
||||
x21d = self.do21d(self.conv21d(x22d)) |
||||
|
||||
# Stage 1d |
||||
x1d = self.upconv1(x21d) |
||||
pad1 = ( |
||||
0, |
||||
paddle.shape(x12_1)[3]-paddle.shape(x1d)[3], |
||||
0, |
||||
paddle.shape(x12_1)[2]-paddle.shape(x1d)[2] |
||||
) |
||||
x1d = paddle.concat([F.pad(x1d, pad=pad1, mode='replicate'), x12_1, x12_2], 1) |
||||
x12d = self.do12d(self.conv12d(x1d)) |
||||
x11d = self.conv11d(x12d) |
||||
|
||||
return x11d, |
||||
|
||||
def init_weight(self): |
||||
for sublayer in self.sublayers(): |
||||
if isinstance(sublayer, nn.Conv2D): |
||||
normal_init(sublayer.weight, std=0.001) |
||||
elif isinstance(sublayer, (nn.BatchNorm, nn.SyncBatchNorm)): |
||||
constant_init(sublayer.weight, value=1.0) |
||||
constant_init(sublayer.bias, value=0.0) |
||||
|
||||
def _make_dropout(self): |
||||
if self.use_dropout: |
||||
return nn.Dropout2D(p=0.2) |
||||
else: |
||||
return Identity() |
@ -0,0 +1,224 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
import paddle.nn.functional as F |
||||
|
||||
|
||||
from .layers import Conv3x3, MaxPool2x2, ConvTransposed3x3, Identity |
||||
from .param_init import normal_init, constant_init |
||||
|
||||
|
||||
class UNetSiamDiff(nn.Layer): |
||||
""" |
||||
The FC-Siam-diff implementation based on PaddlePaddle. |
||||
|
||||
The original article refers to |
||||
Caye Daudt, R., et al. "Fully convolutional siamese networks for change detection" |
||||
(https://arxiv.org/abs/1810.08462) |
||||
|
||||
Args: |
||||
in_channels (int): The number of bands of the input images. |
||||
num_classes (int): The number of target classes. |
||||
use_dropout (bool, optional): A bool value that indicates whether to use dropout layers. |
||||
When the model is trained on a relatively small dataset, the dropout layers help prevent |
||||
overfitting. Default: False. |
||||
""" |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
num_classes, |
||||
use_dropout=False |
||||
): |
||||
super().__init__() |
||||
|
||||
C1, C2, C3, C4, C5 = 16, 32, 64, 128, 256 |
||||
|
||||
self.use_dropout = use_dropout |
||||
|
||||
self.conv11 = Conv3x3(in_channels, C1, norm=True, act=True) |
||||
self.do11 = self._make_dropout() |
||||
self.conv12 = Conv3x3(C1, C1, norm=True, act=True) |
||||
self.do12 = self._make_dropout() |
||||
self.pool1 = MaxPool2x2() |
||||
|
||||
self.conv21 = Conv3x3(C1, C2, norm=True, act=True) |
||||
self.do21 = self._make_dropout() |
||||
self.conv22 = Conv3x3(C2, C2, norm=True, act=True) |
||||
self.do22 = self._make_dropout() |
||||
self.pool2 = MaxPool2x2() |
||||
|
||||
self.conv31 = Conv3x3(C2, C3, norm=True, act=True) |
||||
self.do31 = self._make_dropout() |
||||
self.conv32 = Conv3x3(C3, C3, norm=True, act=True) |
||||
self.do32 = self._make_dropout() |
||||
self.conv33 = Conv3x3(C3, C3, norm=True, act=True) |
||||
self.do33 = self._make_dropout() |
||||
self.pool3 = MaxPool2x2() |
||||
|
||||
self.conv41 = Conv3x3(C3, C4, norm=True, act=True) |
||||
self.do41 = self._make_dropout() |
||||
self.conv42 = Conv3x3(C4, C4, norm=True, act=True) |
||||
self.do42 = self._make_dropout() |
||||
self.conv43 = Conv3x3(C4, C4, norm=True, act=True) |
||||
self.do43 = self._make_dropout() |
||||
self.pool4 = MaxPool2x2() |
||||
|
||||
self.upconv4 = ConvTransposed3x3(C4, C4, output_padding=1) |
||||
|
||||
self.conv43d = Conv3x3(C5, C4, norm=True, act=True) |
||||
self.do43d = self._make_dropout() |
||||
self.conv42d = Conv3x3(C4, C4, norm=True, act=True) |
||||
self.do42d = self._make_dropout() |
||||
self.conv41d = Conv3x3(C4, C3, norm=True, act=True) |
||||
self.do41d = self._make_dropout() |
||||
|
||||
self.upconv3 = ConvTransposed3x3(C3, C3, output_padding=1) |
||||
|
||||
self.conv33d = Conv3x3(C4, C3, norm=True, act=True) |
||||
self.do33d = self._make_dropout() |
||||
self.conv32d = Conv3x3(C3, C3, norm=True, act=True) |
||||
self.do32d = self._make_dropout() |
||||
self.conv31d = Conv3x3(C3, C2, norm=True, act=True) |
||||
self.do31d = self._make_dropout() |
||||
|
||||
self.upconv2 = ConvTransposed3x3(C2, C2, output_padding=1) |
||||
|
||||
self.conv22d = Conv3x3(C3, C2, norm=True, act=True) |
||||
self.do22d = self._make_dropout() |
||||
self.conv21d = Conv3x3(C2, C1, norm=True, act=True) |
||||
self.do21d = self._make_dropout() |
||||
|
||||
self.upconv1 = ConvTransposed3x3(C1, C1, output_padding=1) |
||||
|
||||
self.conv12d = Conv3x3(C2, C1, norm=True, act=True) |
||||
self.do12d = self._make_dropout() |
||||
self.conv11d = Conv3x3(C1, num_classes) |
||||
|
||||
self.init_weight() |
||||
|
||||
def forward(self, t1, t2): |
||||
# Encode t1 |
||||
# Stage 1 |
||||
x11 = self.do11(self.conv11(t1)) |
||||
x12_1 = self.do12(self.conv12(x11)) |
||||
x1p = self.pool1(x12_1) |
||||
|
||||
# Stage 2 |
||||
x21 = self.do21(self.conv21(x1p)) |
||||
x22_1 = self.do22(self.conv22(x21)) |
||||
x2p = self.pool2(x22_1) |
||||
|
||||
# Stage 3 |
||||
x31 = self.do31(self.conv31(x2p)) |
||||
x32 = self.do32(self.conv32(x31)) |
||||
x33_1 = self.do33(self.conv33(x32)) |
||||
x3p = self.pool3(x33_1) |
||||
|
||||
# Stage 4 |
||||
x41 = self.do41(self.conv41(x3p)) |
||||
x42 = self.do42(self.conv42(x41)) |
||||
x43_1 = self.do43(self.conv43(x42)) |
||||
x4p = self.pool4(x43_1) |
||||
|
||||
# Encode t2 |
||||
# Stage 1 |
||||
x11 = self.do11(self.conv11(t2)) |
||||
x12_2 = self.do12(self.conv12(x11)) |
||||
x1p = self.pool1(x12_2) |
||||
|
||||
# Stage 2 |
||||
x21 = self.do21(self.conv21(x1p)) |
||||
x22_2 = self.do22(self.conv22(x21)) |
||||
x2p = self.pool2(x22_2) |
||||
|
||||
# Stage 3 |
||||
x31 = self.do31(self.conv31(x2p)) |
||||
x32 = self.do32(self.conv32(x31)) |
||||
x33_2 = self.do33(self.conv33(x32)) |
||||
x3p = self.pool3(x33_2) |
||||
|
||||
# Stage 4 |
||||
x41 = self.do41(self.conv41(x3p)) |
||||
x42 = self.do42(self.conv42(x41)) |
||||
x43_2 = self.do43(self.conv43(x42)) |
||||
x4p = self.pool4(x43_2) |
||||
|
||||
# Decode |
||||
# Stage 4d |
||||
x4d = self.upconv4(x4p) |
||||
pad4 = ( |
||||
0, |
||||
paddle.shape(x43_1)[3]-paddle.shape(x4d)[3], |
||||
0, |
||||
paddle.shape(x43_1)[2]-paddle.shape(x4d)[2] |
||||
) |
||||
x4d = paddle.concat([F.pad(x4d, pad=pad4, mode='replicate'), paddle.abs(x43_1-x43_2)], 1) |
||||
x43d = self.do43d(self.conv43d(x4d)) |
||||
x42d = self.do42d(self.conv42d(x43d)) |
||||
x41d = self.do41d(self.conv41d(x42d)) |
||||
|
||||
# Stage 3d |
||||
x3d = self.upconv3(x41d) |
||||
pad3 = ( |
||||
0, |
||||
paddle.shape(x33_1)[3]-paddle.shape(x3d)[3], |
||||
0, |
||||
paddle.shape(x33_1)[2]-paddle.shape(x3d)[2] |
||||
) |
||||
x3d = paddle.concat([F.pad(x3d, pad=pad3, mode='replicate'), paddle.abs(x33_1-x33_2)], 1) |
||||
x33d = self.do33d(self.conv33d(x3d)) |
||||
x32d = self.do32d(self.conv32d(x33d)) |
||||
x31d = self.do31d(self.conv31d(x32d)) |
||||
|
||||
# Stage 2d |
||||
x2d = self.upconv2(x31d) |
||||
pad2 = ( |
||||
0, |
||||
paddle.shape(x22_1)[3]-paddle.shape(x2d)[3], |
||||
0, |
||||
paddle.shape(x22_1)[2]-paddle.shape(x2d)[2] |
||||
) |
||||
x2d = paddle.concat([F.pad(x2d, pad=pad2, mode='replicate'), paddle.abs(x22_1-x22_2)], 1) |
||||
x22d = self.do22d(self.conv22d(x2d)) |
||||
x21d = self.do21d(self.conv21d(x22d)) |
||||
|
||||
# Stage 1d |
||||
x1d = self.upconv1(x21d) |
||||
pad1 = ( |
||||
0, |
||||
paddle.shape(x12_1)[3]-paddle.shape(x1d)[3], |
||||
0, |
||||
paddle.shape(x12_1)[2]-paddle.shape(x1d)[2] |
||||
) |
||||
x1d = paddle.concat([F.pad(x1d, pad=pad1, mode='replicate'), paddle.abs(x12_1-x12_2)], 1) |
||||
x12d = self.do12d(self.conv12d(x1d)) |
||||
x11d = self.conv11d(x12d) |
||||
|
||||
return x11d, |
||||
|
||||
def init_weight(self): |
||||
for sublayer in self.sublayers(): |
||||
if isinstance(sublayer, nn.Conv2D): |
||||
normal_init(sublayer.weight, std=0.001) |
||||
elif isinstance(sublayer, (nn.BatchNorm, nn.SyncBatchNorm)): |
||||
constant_init(sublayer.weight, value=1.0) |
||||
constant_init(sublayer.bias, value=0.0) |
||||
|
||||
def _make_dropout(self): |
||||
if self.use_dropout: |
||||
return nn.Dropout2D(p=0.2) |
||||
else: |
||||
return Identity() |
Loading…
Reference in new issue