|
|
|
@ -16,10 +16,10 @@ import os.path as osp |
|
|
|
|
import tempfile |
|
|
|
|
import unittest.mock as mock |
|
|
|
|
|
|
|
|
|
import cv2 |
|
|
|
|
import paddle |
|
|
|
|
|
|
|
|
|
import paddlers as pdrs |
|
|
|
|
from paddlers.transforms import decode_image |
|
|
|
|
from testing_utils import CommonTest, run_script |
|
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
|
@ -31,6 +31,7 @@ __all__ = [ |
|
|
|
|
class TestPredictor(CommonTest): |
|
|
|
|
MODULE = pdrs.tasks |
|
|
|
|
TRAINER_NAME_TO_EXPORT_OPTS = {} |
|
|
|
|
WHITE_LIST = [] |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
|
|
def add_tests(cls): |
|
|
|
@ -42,6 +43,7 @@ class TestPredictor(CommonTest): |
|
|
|
|
def _test_predictor_impl(self): |
|
|
|
|
trainer_class = getattr(self.MODULE, trainer_name) |
|
|
|
|
# Construct trainer with default parameters |
|
|
|
|
# TODO: Load pretrained weights to avoid numeric problems |
|
|
|
|
trainer = trainer_class() |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
dynamic_model_dir = osp.join(td, "dynamic") |
|
|
|
@ -69,6 +71,8 @@ class TestPredictor(CommonTest): |
|
|
|
|
return _test_predictor_impl |
|
|
|
|
|
|
|
|
|
for trainer_name in cls.MODULE.__all__: |
|
|
|
|
if trainer_name in cls.WHITE_LIST: |
|
|
|
|
continue |
|
|
|
|
setattr(cls, 'test_' + trainer_name, _test_predictor(trainer_name)) |
|
|
|
|
|
|
|
|
|
return cls |
|
|
|
@ -76,27 +80,44 @@ class TestPredictor(CommonTest): |
|
|
|
|
def check_predictor(self, predictor, trainer): |
|
|
|
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
def check_dict_equal(self, dict_, expected_dict): |
|
|
|
|
def check_dict_equal( |
|
|
|
|
self, |
|
|
|
|
dict_, |
|
|
|
|
expected_dict, |
|
|
|
|
ignore_keys=('label_map', 'mask', 'category', 'category_id')): |
|
|
|
|
# By default do not compare label_maps, masks, or categories, |
|
|
|
|
# because numeric errors could result in large difference in labels. |
|
|
|
|
if isinstance(dict_, list): |
|
|
|
|
self.assertIsInstance(expected_dict, list) |
|
|
|
|
self.assertEqual(len(dict_), len(expected_dict)) |
|
|
|
|
for d1, d2 in zip(dict_, expected_dict): |
|
|
|
|
self.check_dict_equal(d1, d2) |
|
|
|
|
self.check_dict_equal(d1, d2, ignore_keys=ignore_keys) |
|
|
|
|
else: |
|
|
|
|
assert isinstance(dict_, dict) |
|
|
|
|
assert isinstance(expected_dict, dict) |
|
|
|
|
self.assertEqual(dict_.keys(), expected_dict.keys()) |
|
|
|
|
ignore_keys = set() if ignore_keys is None else set(ignore_keys) |
|
|
|
|
for key in dict_.keys(): |
|
|
|
|
self.check_output_equal(dict_[key], expected_dict[key]) |
|
|
|
|
if key in ignore_keys: |
|
|
|
|
continue |
|
|
|
|
if isinstance(dict_[key], (list, dict)): |
|
|
|
|
self.check_dict_equal( |
|
|
|
|
dict_[key], expected_dict[key], ignore_keys=ignore_keys) |
|
|
|
|
else: |
|
|
|
|
# Use higher tolerance |
|
|
|
|
self.check_output_equal( |
|
|
|
|
dict_[key], expected_dict[key], rtol=1.e-4, atol=1.e-6) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@TestPredictor.add_tests |
|
|
|
|
class TestCDPredictor(TestPredictor): |
|
|
|
|
MODULE = pdrs.tasks.change_detector |
|
|
|
|
TRAINER_NAME_TO_EXPORT_OPTS = { |
|
|
|
|
'BIT': "--fixed_input_shape [1,3,256,256]", |
|
|
|
|
'_default': "--fixed_input_shape [-1,3,256,256]" |
|
|
|
|
} |
|
|
|
|
# HACK: Skip CDNet. |
|
|
|
|
# These models are heavily affected by numeric errors. |
|
|
|
|
WHITE_LIST = ['CDNet'] |
|
|
|
|
|
|
|
|
|
def check_predictor(self, predictor, trainer): |
|
|
|
|
t1_path = "data/ssmt/optical_t1.bmp" |
|
|
|
@ -124,9 +145,9 @@ class TestCDPredictor(TestPredictor): |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarrays) |
|
|
|
|
input_ = ( |
|
|
|
|
cv2.imread(t1_path).astype('float32'), |
|
|
|
|
cv2.imread(t2_path).astype('float32')) # Reuse the name `input_` |
|
|
|
|
input_ = (decode_image( |
|
|
|
|
t1_path, to_rgb=False), decode_image( |
|
|
|
|
t2_path, to_rgb=False)) # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
|
|
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
@ -140,23 +161,21 @@ class TestCDPredictor(TestPredictor): |
|
|
|
|
self.check_dict_equal(out_single_array_list_p[0], |
|
|
|
|
out_single_array_list_t[0]) |
|
|
|
|
|
|
|
|
|
if isinstance(trainer, pdrs.tasks.change_detector.BIT): |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
# Multiple inputs (file paths) |
|
|
|
|
input_ = [single_input] * num_inputs # Reuse the name `input_` |
|
|
|
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
|
|
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t) |
|
|
|
|
self.assertEqual(len(out_multi_file_t), num_inputs) |
|
|
|
|
|
|
|
|
|
# Multiple inputs (ndarrays) |
|
|
|
|
input_ = [(cv2.imread(t1_path).astype('float32'), cv2.imread(t2_path) |
|
|
|
|
.astype('float32'))] * num_inputs # Reuse the name `input_` |
|
|
|
|
input_ = [(decode_image( |
|
|
|
|
t1_path, to_rgb=False), decode_image( |
|
|
|
|
t2_path, to_rgb=False))] * num_inputs # Reuse the name `input_` |
|
|
|
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
|
|
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t) |
|
|
|
|
self.assertEqual(len(out_multi_array_t), num_inputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@TestPredictor.add_tests |
|
|
|
@ -189,8 +208,8 @@ class TestClasPredictor(TestPredictor): |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarray) |
|
|
|
|
input_ = cv2.imread(single_input).astype( |
|
|
|
|
'float32') # Reuse the name `input_` |
|
|
|
|
input_ = decode_image( |
|
|
|
|
single_input, to_rgb=False) # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
|
|
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
@ -209,16 +228,15 @@ class TestClasPredictor(TestPredictor): |
|
|
|
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
|
|
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_file_p), len(out_multi_file_t)) |
|
|
|
|
# Check value consistence |
|
|
|
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t) |
|
|
|
|
|
|
|
|
|
# Multiple inputs (ndarrays) |
|
|
|
|
input_ = [cv2.imread(single_input).astype('float32') |
|
|
|
|
] * num_inputs # Reuse the name `input_` |
|
|
|
|
input_ = [decode_image( |
|
|
|
|
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_` |
|
|
|
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
|
|
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_array_p), len(out_multi_array_t)) |
|
|
|
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -230,6 +248,9 @@ class TestDetPredictor(TestPredictor): |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
def check_predictor(self, predictor, trainer): |
|
|
|
|
# For detection tasks, do NOT ensure the consistence of bboxes. |
|
|
|
|
# This is because the coordinates of bboxes were observed to be very sensitive to numeric errors, |
|
|
|
|
# given that the network is (partially?) randomly initialized. |
|
|
|
|
single_input = "data/ssmt/optical_t1.bmp" |
|
|
|
|
num_inputs = 2 |
|
|
|
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()]) |
|
|
|
@ -239,50 +260,41 @@ class TestDetPredictor(TestPredictor): |
|
|
|
|
|
|
|
|
|
# Single input (file path) |
|
|
|
|
input_ = single_input |
|
|
|
|
out_single_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
out_single_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_file_p, out_single_file_t) |
|
|
|
|
predictor.predict(input_, transforms=transforms) |
|
|
|
|
trainer.predict(input_, transforms=transforms) |
|
|
|
|
out_single_file_list_p = predictor.predict( |
|
|
|
|
[input_], transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_single_file_list_p), 1) |
|
|
|
|
self.check_dict_equal(out_single_file_list_p[0], out_single_file_p) |
|
|
|
|
out_single_file_list_t = trainer.predict( |
|
|
|
|
[input_], transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_file_list_p[0], |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
self.assertEqual(len(out_single_file_list_t), 1) |
|
|
|
|
|
|
|
|
|
# Single input (ndarray) |
|
|
|
|
input_ = cv2.imread(single_input).astype( |
|
|
|
|
'float32') # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
|
|
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_array_t) |
|
|
|
|
input_ = decode_image( |
|
|
|
|
single_input, to_rgb=False) # Reuse the name `input_` |
|
|
|
|
predictor.predict(input_, transforms=transforms) |
|
|
|
|
trainer.predict(input_, transforms=transforms) |
|
|
|
|
out_single_array_list_p = predictor.predict( |
|
|
|
|
[input_], transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_single_array_list_p), 1) |
|
|
|
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p) |
|
|
|
|
out_single_array_list_t = trainer.predict( |
|
|
|
|
[input_], transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_list_p[0], |
|
|
|
|
out_single_array_list_t[0]) |
|
|
|
|
self.assertEqual(len(out_single_array_list_t), 1) |
|
|
|
|
|
|
|
|
|
# Multiple inputs (file paths) |
|
|
|
|
input_ = [single_input] * num_inputs # Reuse the name `input_` |
|
|
|
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
|
|
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_file_p), len(out_multi_file_t)) |
|
|
|
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t) |
|
|
|
|
self.assertEqual(len(out_multi_file_t), num_inputs) |
|
|
|
|
|
|
|
|
|
# Multiple inputs (ndarrays) |
|
|
|
|
input_ = [cv2.imread(single_input).astype('float32') |
|
|
|
|
] * num_inputs # Reuse the name `input_` |
|
|
|
|
input_ = [decode_image( |
|
|
|
|
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_` |
|
|
|
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
|
|
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_array_p), len(out_multi_array_t)) |
|
|
|
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t) |
|
|
|
|
self.assertEqual(len(out_multi_array_t), num_inputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@TestPredictor.add_tests |
|
|
|
@ -312,8 +324,8 @@ class TestSegPredictor(TestPredictor): |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarray) |
|
|
|
|
input_ = cv2.imread(single_input).astype( |
|
|
|
|
'float32') # Reuse the name `input_` |
|
|
|
|
input_ = decode_image( |
|
|
|
|
single_input, to_rgb=False) # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
|
|
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
@ -332,14 +344,12 @@ class TestSegPredictor(TestPredictor): |
|
|
|
|
out_multi_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_file_p), num_inputs) |
|
|
|
|
out_multi_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_file_p), len(out_multi_file_t)) |
|
|
|
|
self.check_dict_equal(out_multi_file_p, out_multi_file_t) |
|
|
|
|
self.assertEqual(len(out_multi_file_t), num_inputs) |
|
|
|
|
|
|
|
|
|
# Multiple inputs (ndarrays) |
|
|
|
|
input_ = [cv2.imread(single_input).astype('float32') |
|
|
|
|
] * num_inputs # Reuse the name `input_` |
|
|
|
|
input_ = [decode_image( |
|
|
|
|
single_input, to_rgb=False)] * num_inputs # Reuse the name `input_` |
|
|
|
|
out_multi_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_array_p), num_inputs) |
|
|
|
|
out_multi_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_multi_array_p), len(out_multi_array_t)) |
|
|
|
|
self.check_dict_equal(out_multi_array_p, out_multi_array_t) |
|
|
|
|
self.assertEqual(len(out_multi_array_t), num_inputs) |
|
|
|
|