|
|
|
@ -12,6 +12,7 @@ |
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
# limitations under the License. |
|
|
|
|
|
|
|
|
|
import os.path as osp |
|
|
|
|
import tempfile |
|
|
|
|
import unittest.mock as mock |
|
|
|
|
|
|
|
|
@ -28,14 +29,18 @@ class TestPredictor(CommonTest): |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
|
|
def add_tests(cls): |
|
|
|
|
""" |
|
|
|
|
Automatically patch testing functions to cls. |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
def _test_predictor(trainer_name): |
|
|
|
|
def _test_predictor_impl(self): |
|
|
|
|
trainer_class = getattr(self.MODULE, trainer_name) |
|
|
|
|
# Construct trainer with default parameters |
|
|
|
|
trainer = trainer_class() |
|
|
|
|
with tempfile.TemporaryDirectory() as td: |
|
|
|
|
dynamic_model_dir = f"{td}/dynamic" |
|
|
|
|
static_model_dir = f"{td}/static" |
|
|
|
|
dynamic_model_dir = osp.join(td, "dynamic") |
|
|
|
|
static_model_dir = osp.join(td, "static") |
|
|
|
|
# HACK: BaseModel.save_model() requires BaseModel().optimizer to be set |
|
|
|
|
optimizer = mock.Mock() |
|
|
|
|
optimizer.state_dict.return_value = {'foo': 'bar'} |
|
|
|
@ -114,9 +119,9 @@ class TestCDPredictor(TestPredictor): |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarrays) |
|
|
|
|
input_ = (cv2.imread(t1_path).astype('float32'), |
|
|
|
|
cv2.imread(t2_path).astype('float32') |
|
|
|
|
) # Reuse the name `input_` |
|
|
|
|
input_ = ( |
|
|
|
|
cv2.imread(t1_path).astype('float32'), |
|
|
|
|
cv2.imread(t2_path).astype('float32')) # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
|
|
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
@ -164,7 +169,7 @@ class TestClasPredictor(TestPredictor): |
|
|
|
|
trainer.labels = labels |
|
|
|
|
predictor._model.labels = labels |
|
|
|
|
|
|
|
|
|
# Single input (file paths) |
|
|
|
|
# Single input (file path) |
|
|
|
|
input_ = single_input |
|
|
|
|
out_single_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
out_single_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
@ -178,7 +183,7 @@ class TestClasPredictor(TestPredictor): |
|
|
|
|
self.check_dict_equal(out_single_file_list_p[0], |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarrays) |
|
|
|
|
# Single input (ndarray) |
|
|
|
|
input_ = cv2.imread(single_input).astype( |
|
|
|
|
'float32') # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
@ -227,7 +232,7 @@ class TestDetPredictor(TestPredictor): |
|
|
|
|
trainer.labels = labels |
|
|
|
|
predictor._model.labels = labels |
|
|
|
|
|
|
|
|
|
# Single input (file paths) |
|
|
|
|
# Single input (file path) |
|
|
|
|
input_ = single_input |
|
|
|
|
out_single_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
out_single_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
@ -241,23 +246,7 @@ class TestDetPredictor(TestPredictor): |
|
|
|
|
self.check_dict_equal(out_single_file_list_p[0], |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarrays) |
|
|
|
|
input_ = cv2.imread(single_input).astype( |
|
|
|
|
'float32') # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_file_p) |
|
|
|
|
out_single_array_t = trainer.predict(input_, transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_p, out_single_array_t) |
|
|
|
|
out_single_array_list_p = predictor.predict( |
|
|
|
|
[input_], transforms=transforms) |
|
|
|
|
self.assertEqual(len(out_single_array_list_p), 1) |
|
|
|
|
self.check_dict_equal(out_single_array_list_p[0], out_single_array_p) |
|
|
|
|
out_single_array_list_t = trainer.predict( |
|
|
|
|
[input_], transforms=transforms) |
|
|
|
|
self.check_dict_equal(out_single_array_list_p[0], |
|
|
|
|
out_single_array_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarrays) |
|
|
|
|
# Single input (ndarray) |
|
|
|
|
input_ = cv2.imread(single_input).astype( |
|
|
|
|
'float32') # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
@ -303,7 +292,7 @@ class TestSegPredictor(TestPredictor): |
|
|
|
|
num_inputs = 2 |
|
|
|
|
transforms = pdrs.transforms.Compose([pdrs.transforms.Normalize()]) |
|
|
|
|
|
|
|
|
|
# Single input (file paths) |
|
|
|
|
# Single input (file path) |
|
|
|
|
input_ = single_input |
|
|
|
|
out_single_file_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|
out_single_file_t = trainer.predict(input_, transforms=transforms) |
|
|
|
@ -317,7 +306,7 @@ class TestSegPredictor(TestPredictor): |
|
|
|
|
self.check_dict_equal(out_single_file_list_p[0], |
|
|
|
|
out_single_file_list_t[0]) |
|
|
|
|
|
|
|
|
|
# Single input (ndarrays) |
|
|
|
|
# Single input (ndarray) |
|
|
|
|
input_ = cv2.imread(single_input).astype( |
|
|
|
|
'float32') # Reuse the name `input_` |
|
|
|
|
out_single_array_p = predictor.predict(input_, transforms=transforms) |
|
|
|
|