parent
7852a044aa
commit
5aed28bf81
2 changed files with 88 additions and 1 deletions
@ -0,0 +1,86 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. |
||||
# |
||||
#Licensed under the Apache License, Version 2.0 (the "License"); |
||||
#you may not use this file except in compliance with the License. |
||||
#You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
#Unless required by applicable law or agreed to in writing, software |
||||
#distributed under the License is distributed on an "AS IS" BASIS, |
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
#See the License for the specific language governing permissions and |
||||
#limitations under the License. |
||||
|
||||
import os |
||||
import cv2 |
||||
import glob |
||||
import numpy as np |
||||
from PIL import Image |
||||
from tqdm import tqdm |
||||
|
||||
import paddle |
||||
from ..models.generators import RRDBNet |
||||
from ..utils.download import get_path_from_url |
||||
from ..utils.logger import get_logger |
||||
|
||||
from .base_predictor import BasePredictor |
||||
|
||||
SR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/models/esrgan_x4.pdparams' |
||||
|
||||
class ESRGANPredictor(BasePredictor): |
||||
def __init__(self, output='output', weight_path=None): |
||||
self.input = input |
||||
self.output = os.path.join(output, 'ESRGAN') |
||||
self.model = RRDBNet(3, 3, 64, 23) |
||||
if weight_path is None: |
||||
weight_path = get_path_from_url(SR_WEIGHT_URL) |
||||
|
||||
state_dict = paddle.load(weight_path) |
||||
state_dict = state_dict['generator'] |
||||
self.model.load_dict(state_dict) |
||||
self.model.eval() |
||||
|
||||
def norm(self, img): |
||||
img = np.array(img).transpose([2, 0, 1]).astype('float32') / 255.0 |
||||
return img.astype('float32') |
||||
|
||||
def denorm(self, img): |
||||
img = img.transpose((1, 2, 0)) |
||||
return (img * 255).clip(0, 255).astype('uint8') |
||||
|
||||
def run_image(self, img): |
||||
if isinstance(img, str): |
||||
ori_img = Image.open(img).convert('RGB') |
||||
elif isinstance(img, np.ndarray): |
||||
ori_img = Image.fromarray(img).convert('RGB') |
||||
elif isinstance(img, Image.Image): |
||||
ori_img = img |
||||
|
||||
img = self.norm(ori_img) |
||||
x = paddle.to_tensor(img[np.newaxis, ...]) |
||||
with paddle.no_grad(): |
||||
out = self.model(x) |
||||
|
||||
pred_img = self.denorm(out.numpy()[0]) |
||||
pred_img = Image.fromarray(pred_img) |
||||
return pred_img |
||||
|
||||
def run(self, input): |
||||
if not os.path.exists(self.output): |
||||
os.makedirs(self.output) |
||||
|
||||
pred_img = self.run_image(input) |
||||
|
||||
out_path = None |
||||
if self.output: |
||||
try: |
||||
base_name = os.path.splitext(os.path.basename(input))[0] |
||||
except: |
||||
base_name = 'result' |
||||
out_path = os.path.join(self.output, base_name + '.png') |
||||
pred_img.save(out_path) |
||||
logger = get_logger() |
||||
logger.info('Image saved to {}'.format(out_path)) |
||||
|
||||
return pred_img, out_path |
Loading…
Reference in new issue