|
|
|
@ -53,6 +53,17 @@ if __name__ == '__main__': |
|
|
|
|
paddlers.utils.download_and_decompress( |
|
|
|
|
cfg['download_url'], path=cfg['download_path']) |
|
|
|
|
|
|
|
|
|
if not isinstance(cfg['datasets']['eval'].args, dict): |
|
|
|
|
raise ValueError("args of eval dataset must be a dict!") |
|
|
|
|
if cfg['datasets']['eval'].args.get('transforms', None) is not None: |
|
|
|
|
raise ValueError( |
|
|
|
|
"Found key 'transforms' in args of eval dataset and the value is not None." |
|
|
|
|
) |
|
|
|
|
eval_transforms = T.Compose(build_objects(cfg['transforms']['eval'], mod=T)) |
|
|
|
|
# Inplace modification |
|
|
|
|
cfg['datasets']['eval'].args['transforms'] = eval_transforms |
|
|
|
|
eval_dataset = build_objects(cfg['datasets']['eval'], mod=paddlers.datasets) |
|
|
|
|
|
|
|
|
|
if cfg['cmd'] == 'train': |
|
|
|
|
if not isinstance(cfg['datasets']['train'].args, dict): |
|
|
|
|
raise ValueError("args of train dataset must be a dict!") |
|
|
|
@ -67,21 +78,8 @@ if __name__ == '__main__': |
|
|
|
|
cfg['datasets']['train'].args['transforms'] = train_transforms |
|
|
|
|
train_dataset = build_objects( |
|
|
|
|
cfg['datasets']['train'], mod=paddlers.datasets) |
|
|
|
|
if not isinstance(cfg['datasets']['eval'].args, dict): |
|
|
|
|
raise ValueError("args of eval dataset must be a dict!") |
|
|
|
|
if cfg['datasets']['eval'].args.get('transforms', None) is not None: |
|
|
|
|
raise ValueError( |
|
|
|
|
"Found key 'transforms' in args of eval dataset and the value is not None." |
|
|
|
|
) |
|
|
|
|
eval_transforms = T.Compose(build_objects(cfg['transforms']['eval'], mod=T)) |
|
|
|
|
# Inplace modification |
|
|
|
|
cfg['datasets']['eval'].args['transforms'] = eval_transforms |
|
|
|
|
eval_dataset = build_objects(cfg['datasets']['eval'], mod=paddlers.datasets) |
|
|
|
|
|
|
|
|
|
model = build_objects( |
|
|
|
|
cfg['model'], mod=getattr(paddlers.tasks, cfg['task'])) |
|
|
|
|
|
|
|
|
|
if cfg['cmd'] == 'train': |
|
|
|
|
model = build_objects( |
|
|
|
|
cfg['model'], mod=getattr(paddlers.tasks, cfg['task'])) |
|
|
|
|
if cfg['optimizer']: |
|
|
|
|
if len(cfg['optimizer'].args) == 0: |
|
|
|
|
cfg['optimizer'].args = {} |
|
|
|
@ -112,8 +110,6 @@ if __name__ == '__main__': |
|
|
|
|
resume_checkpoint=cfg['resume_checkpoint'] or None, |
|
|
|
|
**cfg['train']) |
|
|
|
|
elif cfg['cmd'] == 'eval': |
|
|
|
|
state_dict = paddle.load( |
|
|
|
|
os.path.join(cfg['resume_checkpoint'], 'model.pdparams')) |
|
|
|
|
model.net.set_state_dict(state_dict) |
|
|
|
|
model = paddlers.tasks.load_model(cfg['resume_checkpoint']) |
|
|
|
|
res = model.evaluate(eval_dataset) |
|
|
|
|
print(res) |
|
|
|
|