Update hyperparams for detection models

own
Bobholamovic 3 years ago
parent d1af166263
commit 4cca92778f
  1. 7
      tutorials/train/object_detection/faster_rcnn.py
  2. 9
      tutorials/train/object_detection/ppyolo.py
  3. 7
      tutorials/train/object_detection/ppyolotiny.py
  4. 7
      tutorials/train/object_detection/ppyolov2.py
  5. 7
      tutorials/train/object_detection/yolov3.py

@ -29,18 +29,13 @@ pdrs.utils.download_and_decompress(
train_transforms = T.Compose([
# 读取影像
T.DecodeImg(),
# 对输入影像施加随机色彩扰动
T.RandomDistort(),
# 在影像边界进行随机padding
T.RandomExpand(),
# 随机裁剪,裁块大小在一定范围内变动
T.RandomCrop(),
# 随机水平翻转
T.RandomHorizontalFlip(),
# 对batch进行随机缩放,随机选择插值方式
T.BatchRandomResize(
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
interp='RANDOM'),
target_sizes=[512, 544, 576, 608], interp='RANDOM'),
# 影像归一化
T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

@ -29,18 +29,13 @@ pdrs.utils.download_and_decompress(
train_transforms = T.Compose([
# 读取影像
T.DecodeImg(),
# 对输入影像施加随机色彩扰动
T.RandomDistort(),
# 在影像边界进行随机padding
T.RandomExpand(),
# 随机裁剪,裁块大小在一定范围内变动
T.RandomCrop(),
# 随机水平翻转
T.RandomHorizontalFlip(),
# 对batch进行随机缩放,随机选择插值方式
T.BatchRandomResize(
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
interp='RANDOM'),
target_sizes=[512, 544, 576, 608], interp='RANDOM'),
# 影像归一化
T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
@ -92,7 +87,7 @@ model.train(
# 指定预训练权重
pretrain_weights='COCO',
# 初始学习率大小
learning_rate=0.0005,
learning_rate=0.0001,
# 学习率预热(learning rate warm-up)步数与初始值
warmup_steps=0,
warmup_start_lr=0.0,

@ -29,18 +29,13 @@ pdrs.utils.download_and_decompress(
train_transforms = T.Compose([
# 读取影像
T.DecodeImg(),
# 对输入影像施加随机色彩扰动
T.RandomDistort(),
# 在影像边界进行随机padding
T.RandomExpand(),
# 随机裁剪,裁块大小在一定范围内变动
T.RandomCrop(),
# 随机水平翻转
T.RandomHorizontalFlip(),
# 对batch进行随机缩放,随机选择插值方式
T.BatchRandomResize(
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
interp='RANDOM'),
target_sizes=[512, 544, 576, 608], interp='RANDOM'),
# 影像归一化
T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

@ -29,18 +29,13 @@ pdrs.utils.download_and_decompress(
train_transforms = T.Compose([
# 读取影像
T.DecodeImg(),
# 对输入影像施加随机色彩扰动
T.RandomDistort(),
# 在影像边界进行随机padding
T.RandomExpand(),
# 随机裁剪,裁块大小在一定范围内变动
T.RandomCrop(),
# 随机水平翻转
T.RandomHorizontalFlip(),
# 对batch进行随机缩放,随机选择插值方式
T.BatchRandomResize(
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
interp='RANDOM'),
target_sizes=[512, 544, 576, 608], interp='RANDOM'),
# 影像归一化
T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

@ -29,18 +29,13 @@ pdrs.utils.download_and_decompress(
train_transforms = T.Compose([
# 读取影像
T.DecodeImg(),
# 对输入影像施加随机色彩扰动
T.RandomDistort(),
# 在影像边界进行随机padding
T.RandomExpand(),
# 随机裁剪,裁块大小在一定范围内变动
T.RandomCrop(),
# 随机水平翻转
T.RandomHorizontalFlip(),
# 对batch进行随机缩放,随机选择插值方式
T.BatchRandomResize(
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608],
interp='RANDOM'),
target_sizes=[512, 544, 576, 608], interp='RANDOM'),
# 影像归一化
T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

Loading…
Cancel
Save