|
|
|
@ -29,18 +29,13 @@ pdrs.utils.download_and_decompress( |
|
|
|
|
train_transforms = T.Compose([ |
|
|
|
|
# 读取影像 |
|
|
|
|
T.DecodeImg(), |
|
|
|
|
# 对输入影像施加随机色彩扰动 |
|
|
|
|
T.RandomDistort(), |
|
|
|
|
# 在影像边界进行随机padding |
|
|
|
|
T.RandomExpand(), |
|
|
|
|
# 随机裁剪,裁块大小在一定范围内变动 |
|
|
|
|
T.RandomCrop(), |
|
|
|
|
# 随机水平翻转 |
|
|
|
|
T.RandomHorizontalFlip(), |
|
|
|
|
# 对batch进行随机缩放,随机选择插值方式 |
|
|
|
|
T.BatchRandomResize( |
|
|
|
|
target_sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608], |
|
|
|
|
interp='RANDOM'), |
|
|
|
|
target_sizes=[512, 544, 576, 608], interp='RANDOM'), |
|
|
|
|
# 影像归一化 |
|
|
|
|
T.Normalize( |
|
|
|
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
|
|
@ -92,7 +87,7 @@ model.train( |
|
|
|
|
# 指定预训练权重 |
|
|
|
|
pretrain_weights='COCO', |
|
|
|
|
# 初始学习率大小 |
|
|
|
|
learning_rate=0.0005, |
|
|
|
|
learning_rate=0.0001, |
|
|
|
|
# 学习率预热(learning rate warm-up)步数与初始值 |
|
|
|
|
warmup_steps=0, |
|
|
|
|
warmup_start_lr=0.0, |
|
|
|
|