[Feature] Add training tutorials for segmentation tasks (#34)
parent
7ab3e65a12
commit
453b332ac7
6 changed files with 184 additions and 167 deletions
@ -0,0 +1,4 @@ |
||||
*.zip |
||||
*.tar.gz |
||||
rsseg/ |
||||
optic/ |
@ -0,0 +1,91 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# 图像分割模型DeepLab V3+训练示例脚本 |
||||
# 执行此脚本前,请确认已正确安装PaddleRS库 |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载文件存放目录 |
||||
DOWNLOAD_DIR = './data/rsseg/' |
||||
# 数据集存放目录 |
||||
DATA_DIR = './data/rsseg/remote_sensing_seg/' |
||||
# 训练集`file_list`文件路径 |
||||
TRAIN_FILE_LIST_PATH = './data/rsseg/remote_sensing_seg/train.txt' |
||||
# 验证集`file_list`文件路径 |
||||
EVAL_FILE_LIST_PATH = './data/rsseg/remote_sensing_seg/val.txt' |
||||
# 数据集类别信息文件路径 |
||||
LABEL_LIST_PATH = './data/rsseg/remote_sensing_seg/labels.txt' |
||||
# 实验目录,保存输出的模型权重和结果 |
||||
EXP_DIR = './output/deeplabv3p/' |
||||
|
||||
# 影像波段数量 |
||||
NUM_BANDS = 10 |
||||
|
||||
# 下载和解压多光谱地块分类数据集 |
||||
seg_dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip' |
||||
pdrs.utils.download_and_decompress(seg_dataset, path=DOWNLOAD_DIR) |
||||
|
||||
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
||||
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
||||
# API说明:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/transforms.md |
||||
train_transforms = T.Compose([ |
||||
# 将影像缩放到512x512大小 |
||||
T.Resize(target_size=512), |
||||
# 以50%的概率实施随机水平翻转 |
||||
T.RandomHorizontalFlip(prob=0.5), |
||||
# 将数据归一化到[-1,1] |
||||
T.Normalize( |
||||
mean=[0.5] * NUM_BANDS, std=[0.5] * NUM_BANDS), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
# 验证阶段与训练阶段的数据归一化方式必须相同 |
||||
T.Normalize( |
||||
mean=[0.5] * NUM_BANDS, std=[0.5] * NUM_BANDS), |
||||
]) |
||||
|
||||
# 分别构建训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.SegDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=TRAIN_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.SegDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=EVAL_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 构建DeepLab V3+模型,使用ResNet-50作为backbone |
||||
# 目前已支持的模型请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/model_zoo.md |
||||
# 模型输入参数请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/paddlers/tasks/segmenter.py |
||||
model = pdrs.tasks.DeepLabV3P( |
||||
input_channel=NUM_BANDS, |
||||
num_classes=len(train_dataset.labels), |
||||
backbone='ResNet50_vd') |
||||
|
||||
# 执行模型训练 |
||||
model.train( |
||||
num_epochs=10, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=4, |
||||
eval_dataset=eval_dataset, |
||||
save_interval_epochs=5, |
||||
# 每多少次迭代记录一次日志 |
||||
log_interval_steps=50, |
||||
save_dir=EXP_DIR, |
||||
# 初始学习率大小 |
||||
learning_rate=0.01, |
||||
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
||||
early_stop=False, |
||||
# 是否启用VisualDL日志功能 |
||||
use_vdl=True, |
||||
# 指定从某个检查点继续训练 |
||||
resume_checkpoint=None) |
@ -1,54 +0,0 @@ |
||||
import os |
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载和解压多光谱地块分类数据集 |
||||
dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip' |
||||
pdrs.utils.download_and_decompress(dataset, path='./data') |
||||
|
||||
# 定义训练和验证时的transforms |
||||
channel = 10 |
||||
train_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.RandomHorizontalFlip(), |
||||
T.Normalize( |
||||
mean=[0.5] * channel, std=[0.5] * channel), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.Normalize( |
||||
mean=[0.5] * channel, std=[0.5] * channel), |
||||
]) |
||||
|
||||
# 定义训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.SegDataset( |
||||
data_dir='./data/remote_sensing_seg', |
||||
file_list='./data/remote_sensing_seg/train.txt', |
||||
label_list='./data/remote_sensing_seg/labels.txt', |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.SegDataset( |
||||
data_dir='./data/remote_sensing_seg', |
||||
file_list='./data/remote_sensing_seg/val.txt', |
||||
label_list='./data/remote_sensing_seg/labels.txt', |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 初始化模型,并进行训练 |
||||
# 可使用VisualDL查看训练指标 |
||||
num_classes = len(train_dataset.labels) |
||||
model = pdrs.tasks.DeepLabV3P(input_channel=channel, num_classes=num_classes, backbone='ResNet50_vd') |
||||
|
||||
model.train( |
||||
num_epochs=10, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=4, |
||||
eval_dataset=eval_dataset, |
||||
learning_rate=0.01, |
||||
save_dir='output/deeplabv3p_r50vd') |
@ -1,58 +0,0 @@ |
||||
import os |
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载和解压视盘分割数据集 |
||||
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz' |
||||
pdrs.utils.download_and_decompress(optic_dataset, path='./') |
||||
|
||||
# 定义训练和验证时的transforms |
||||
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/transforms/transforms.md |
||||
train_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.RandomHorizontalFlip(), |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
# 定义训练和验证所用的数据集 |
||||
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/datasets.md |
||||
train_dataset = pdrs.datasets.SegDataset( |
||||
data_dir='optic_disc_seg', |
||||
file_list='optic_disc_seg/train_list.txt', |
||||
label_list='optic_disc_seg/labels.txt', |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.SegDataset( |
||||
data_dir='optic_disc_seg', |
||||
file_list='optic_disc_seg/val_list.txt', |
||||
label_list='optic_disc_seg/labels.txt', |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 初始化模型,并进行训练 |
||||
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/paddlers/blob/develop/docs/visualdl.md |
||||
num_classes = len(train_dataset.labels) |
||||
model = pdrs.tasks.FarSeg(num_classes=num_classes) |
||||
|
||||
# API说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/apis/models/semantic_segmentation.md |
||||
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/paddlers/blob/develop/docs/parameters.md |
||||
model.train( |
||||
num_epochs=10, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=4, |
||||
eval_dataset=eval_dataset, |
||||
learning_rate=0.01, |
||||
pretrain_weights=None, |
||||
save_dir='output/farseg') |
@ -0,0 +1,89 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# 图像分割模型UNet训练示例脚本 |
||||
# 执行此脚本前,请确认已正确安装PaddleRS库 |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载文件存放目录 |
||||
DOWNLOAD_DIR = './data/rsseg/' |
||||
# 数据集存放目录 |
||||
DATA_DIR = './data/rsseg/remote_sensing_seg/' |
||||
# 训练集`file_list`文件路径 |
||||
TRAIN_FILE_LIST_PATH = './data/rsseg/remote_sensing_seg/train.txt' |
||||
# 验证集`file_list`文件路径 |
||||
EVAL_FILE_LIST_PATH = './data/rsseg/remote_sensing_seg/val.txt' |
||||
# 数据集类别信息文件路径 |
||||
LABEL_LIST_PATH = './data/rsseg/remote_sensing_seg/labels.txt' |
||||
# 实验目录,保存输出的模型权重和结果 |
||||
EXP_DIR = './output/unet/' |
||||
|
||||
# 影像波段数量 |
||||
NUM_BANDS = 10 |
||||
|
||||
# 下载和解压多光谱地块分类数据集 |
||||
seg_dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip' |
||||
pdrs.utils.download_and_decompress(seg_dataset, path=DOWNLOAD_DIR) |
||||
|
||||
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
||||
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
||||
# API说明:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/transforms.md |
||||
train_transforms = T.Compose([ |
||||
# 将影像缩放到512x512大小 |
||||
T.Resize(target_size=512), |
||||
# 以50%的概率实施随机水平翻转 |
||||
T.RandomHorizontalFlip(prob=0.5), |
||||
# 将数据归一化到[-1,1] |
||||
T.Normalize( |
||||
mean=[0.5] * NUM_BANDS, std=[0.5] * NUM_BANDS), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
# 验证阶段与训练阶段的数据归一化方式必须相同 |
||||
T.Normalize( |
||||
mean=[0.5] * NUM_BANDS, std=[0.5] * NUM_BANDS), |
||||
]) |
||||
|
||||
# 分别构建训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.SegDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=TRAIN_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.SegDataset( |
||||
data_dir=DATA_DIR, |
||||
file_list=EVAL_FILE_LIST_PATH, |
||||
label_list=LABEL_LIST_PATH, |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 构建UNet模型 |
||||
# 目前已支持的模型请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/docs/apis/model_zoo.md |
||||
# 模型输入参数请参考:https://github.com/PaddleCV-SIG/PaddleRS/blob/develop/paddlers/tasks/segmenter.py |
||||
model = pdrs.tasks.UNet( |
||||
input_channel=NUM_BANDS, num_classes=len(train_dataset.labels)) |
||||
|
||||
# 执行模型训练 |
||||
model.train( |
||||
num_epochs=10, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=4, |
||||
eval_dataset=eval_dataset, |
||||
save_interval_epochs=5, |
||||
# 每多少次迭代记录一次日志 |
||||
log_interval_steps=50, |
||||
save_dir=EXP_DIR, |
||||
# 初始学习率大小 |
||||
learning_rate=0.01, |
||||
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
||||
early_stop=False, |
||||
# 是否启用VisualDL日志功能 |
||||
use_vdl=True, |
||||
# 指定从某个检查点继续训练 |
||||
resume_checkpoint=None) |
@ -1,55 +0,0 @@ |
||||
import os |
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
||||
|
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 下载和解压多光谱地块分类数据集 |
||||
dataset = 'https://paddleseg.bj.bcebos.com/dataset/remote_sensing_seg.zip' |
||||
pdrs.utils.download_and_decompress(dataset, path='./data') |
||||
|
||||
# 定义训练和验证时的transforms |
||||
channel = 10 |
||||
train_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.RandomHorizontalFlip(), |
||||
T.Normalize( |
||||
mean=[0.5] * channel, std=[0.5] * channel), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.Resize(target_size=512), |
||||
T.Normalize( |
||||
mean=[0.5] * channel, std=[0.5] * channel), |
||||
]) |
||||
|
||||
# 定义训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.SegDataset( |
||||
data_dir='./data/remote_sensing_seg', |
||||
file_list='./data/remote_sensing_seg/train.txt', |
||||
label_list='./data/remote_sensing_seg/labels.txt', |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.SegDataset( |
||||
data_dir='./data/remote_sensing_seg', |
||||
file_list='./data/remote_sensing_seg/val.txt', |
||||
label_list='./data/remote_sensing_seg/labels.txt', |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 初始化模型,并进行训练 |
||||
# 可使用VisualDL查看训练指标 |
||||
num_classes = len(train_dataset.labels) |
||||
model = pdrs.tasks.UNet(input_channel=channel, num_classes=num_classes) |
||||
|
||||
model.train( |
||||
num_epochs=20, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=4, |
||||
eval_dataset=eval_dataset, |
||||
learning_rate=0.01, |
||||
save_dir='output/unet', |
||||
use_vdl=True) |
Loading…
Reference in new issue