|
|
|
@ -20,6 +20,8 @@ import shapely.ops |
|
|
|
|
from shapely.geometry import Polygon, MultiPolygon, GeometryCollection |
|
|
|
|
from functools import reduce |
|
|
|
|
from sklearn.decomposition import PCA |
|
|
|
|
from sklearn.linear_model import LinearRegression |
|
|
|
|
from skimage import exposure |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def normalize(im, mean, std, min_value=[0, 0, 0], max_value=[255, 255, 255]): |
|
|
|
@ -378,4 +380,65 @@ def pca(im, dim=3, whiten=True): |
|
|
|
|
im_pca = pca.fit_transform(n_im) |
|
|
|
|
result = np.reshape(im_pca, (H, W, dim)) |
|
|
|
|
result = np.clip(result, 0, 1) |
|
|
|
|
return (result * 255).astype("uint8") |
|
|
|
|
return (result * 255).astype("uint8") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def match_histograms(im, ref): |
|
|
|
|
""" |
|
|
|
|
Match the cumulative histogram of one image to another. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
im (np.ndarray): The input image. |
|
|
|
|
ref (np.ndarray): The reference image to match histogram of. `ref` must have the same number of channels as `im`. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
np.ndarray: The transformed input image. |
|
|
|
|
|
|
|
|
|
Raises: |
|
|
|
|
ValueError: When the number of channels of `ref` differs from that of im`. |
|
|
|
|
""" |
|
|
|
|
# TODO: Check the data types of the inputs to see if they are supported by skimage |
|
|
|
|
return exposure.match_histograms(im, ref, channel_axis=-1 if im.ndim>2 else None) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def match_by_regression(im, ref, pif_loc=None): |
|
|
|
|
""" |
|
|
|
|
Match the brightness values of two images using a linear regression method. |
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
im (np.ndarray): The input image. |
|
|
|
|
ref (np.ndarray): The reference image to match. `ref` must have the same shape as `im`. |
|
|
|
|
pif_loc (tuple|None, optional): The spatial locations where pseudo-invariant features (PIFs) are obtained. If |
|
|
|
|
`pif_loc` is set to None, all pixels in the image will be used as training samples for the regression model. |
|
|
|
|
In other cases, `pif_loc` should be a tuple of np.ndarrays. Default: None. |
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
np.ndarray: The transformed input image. |
|
|
|
|
|
|
|
|
|
Raises: |
|
|
|
|
ValueError: When the shape of `ref` differs from that of `im`. |
|
|
|
|
""" |
|
|
|
|
def _linear_regress(im, ref, loc): |
|
|
|
|
regressor = LinearRegression() |
|
|
|
|
if loc is not None: |
|
|
|
|
x, y = im[loc], ref[loc] |
|
|
|
|
else: |
|
|
|
|
x, y = im, ref |
|
|
|
|
x, y = x.reshape(-1,1), y.ravel() |
|
|
|
|
regressor.fit(x, y) |
|
|
|
|
matched = regressor.predict(im.reshape(-1,1)) |
|
|
|
|
return matched.reshape(im.shape) |
|
|
|
|
|
|
|
|
|
if im.shape != ref.shape: |
|
|
|
|
raise ValueError("Image and Reference must have the same shape!") |
|
|
|
|
|
|
|
|
|
if im.ndim > 2: |
|
|
|
|
# Multiple channels |
|
|
|
|
matched = np.empty(im.shape, dtype=im.dtype) |
|
|
|
|
for ch in range(im.shape[-1]): |
|
|
|
|
matched[..., ch] = _linear_regress(im[..., ch], ref[..., ch], pif_loc) |
|
|
|
|
else: |
|
|
|
|
# Single channel |
|
|
|
|
matched = _linear_regress(im, ref, pif_loc).astype(im.dtype) |
|
|
|
|
|
|
|
|
|
return matched |