[Feature] Update multispectral scene classification (#36)
parent
037d62f379
commit
39c82d943a
37 changed files with 1155 additions and 723 deletions
@ -1,24 +0,0 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from .bit import BIT |
||||
from .cdnet import CDNet |
||||
from .dsifn import DSIFN |
||||
from .stanet import STANet |
||||
from .snunet import SNUNet |
||||
from .dsamnet import DSAMNet |
||||
from .changestar import ChangeStar |
||||
from .unet_ef import UNetEarlyFusion |
||||
from .unet_siamconc import UNetSiamConc |
||||
from .unet_siamdiff import UNetSiamDiff |
@ -0,0 +1,441 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
""" |
||||
This code is based on https://github.com/AgentMaker/Paddle-Image-Models |
||||
Ths copyright of AgentMaker/Paddle-Image-Models is as follows: |
||||
Apache License [see LICENSE for details] |
||||
""" |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
|
||||
__all__ = ["CondenseNetV2_a", "CondenseNetV2_b", "CondenseNetV2_c"] |
||||
|
||||
|
||||
class SELayer(nn.Layer): |
||||
def __init__(self, inplanes, reduction=16): |
||||
super(SELayer, self).__init__() |
||||
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
||||
self.fc = nn.Sequential( |
||||
nn.Linear( |
||||
inplanes, inplanes // reduction, bias_attr=False), |
||||
nn.ReLU(), |
||||
nn.Linear( |
||||
inplanes // reduction, inplanes, bias_attr=False), |
||||
nn.Sigmoid(), ) |
||||
|
||||
def forward(self, x): |
||||
b, c, _, _ = x.shape |
||||
y = self.avg_pool(x).reshape((b, c)) |
||||
y = self.fc(y).reshape((b, c, 1, 1)) |
||||
return x * y.expand_as(x) |
||||
|
||||
|
||||
class HS(nn.Layer): |
||||
def __init__(self): |
||||
super(HS, self).__init__() |
||||
self.relu6 = nn.ReLU6() |
||||
|
||||
def forward(self, inputs): |
||||
return inputs * self.relu6(inputs + 3) / 6 |
||||
|
||||
|
||||
class Conv(nn.Sequential): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", |
||||
bn_momentum=0.9, ): |
||||
super(Conv, self).__init__() |
||||
self.add_sublayer( |
||||
"norm", nn.BatchNorm2D( |
||||
in_channels, momentum=bn_momentum)) |
||||
if activation == "ReLU": |
||||
self.add_sublayer("activation", nn.ReLU()) |
||||
elif activation == "HS": |
||||
self.add_sublayer("activation", HS()) |
||||
else: |
||||
raise NotImplementedError |
||||
self.add_sublayer( |
||||
"conv", |
||||
nn.Conv2D( |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size=kernel_size, |
||||
stride=stride, |
||||
padding=padding, |
||||
bias_attr=False, |
||||
groups=groups, ), ) |
||||
|
||||
|
||||
def ShuffleLayer(x, groups): |
||||
batchsize, num_channels, height, width = x.shape |
||||
channels_per_group = num_channels // groups |
||||
# reshape |
||||
x = x.reshape((batchsize, groups, channels_per_group, height, width)) |
||||
# transpose |
||||
x = x.transpose((0, 2, 1, 3, 4)) |
||||
# reshape |
||||
x = x.reshape((batchsize, -1, height, width)) |
||||
return x |
||||
|
||||
|
||||
def ShuffleLayerTrans(x, groups): |
||||
batchsize, num_channels, height, width = x.shape |
||||
channels_per_group = num_channels // groups |
||||
# reshape |
||||
x = x.reshape((batchsize, channels_per_group, groups, height, width)) |
||||
# transpose |
||||
x = x.transpose((0, 2, 1, 3, 4)) |
||||
# reshape |
||||
x = x.reshape((batchsize, -1, height, width)) |
||||
return x |
||||
|
||||
|
||||
class CondenseLGC(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", ): |
||||
super(CondenseLGC, self).__init__() |
||||
self.in_channels = in_channels |
||||
self.out_channels = out_channels |
||||
self.groups = groups |
||||
self.norm = nn.BatchNorm2D(self.in_channels) |
||||
if activation == "ReLU": |
||||
self.activation = nn.ReLU() |
||||
elif activation == "HS": |
||||
self.activation = HS() |
||||
else: |
||||
raise NotImplementedError |
||||
self.conv = nn.Conv2D( |
||||
self.in_channels, |
||||
self.out_channels, |
||||
kernel_size=kernel_size, |
||||
stride=stride, |
||||
padding=padding, |
||||
groups=self.groups, |
||||
bias_attr=False, ) |
||||
self.register_buffer( |
||||
"index", paddle.zeros( |
||||
(self.in_channels, ), dtype="int64")) |
||||
|
||||
def forward(self, x): |
||||
x = paddle.index_select(x, self.index, axis=1) |
||||
x = self.norm(x) |
||||
x = self.activation(x) |
||||
x = self.conv(x) |
||||
x = ShuffleLayer(x, self.groups) |
||||
return x |
||||
|
||||
|
||||
class CondenseSFR(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
groups=1, |
||||
activation="ReLU", ): |
||||
super(CondenseSFR, self).__init__() |
||||
self.in_channels = in_channels |
||||
self.out_channels = out_channels |
||||
self.groups = groups |
||||
self.norm = nn.BatchNorm2D(self.in_channels) |
||||
if activation == "ReLU": |
||||
self.activation = nn.ReLU() |
||||
elif activation == "HS": |
||||
self.activation = HS() |
||||
else: |
||||
raise NotImplementedError |
||||
self.conv = nn.Conv2D( |
||||
self.in_channels, |
||||
self.out_channels, |
||||
kernel_size=kernel_size, |
||||
padding=padding, |
||||
groups=self.groups, |
||||
bias_attr=False, |
||||
stride=stride, ) |
||||
self.register_buffer("index", |
||||
paddle.zeros( |
||||
(self.out_channels, self.out_channels))) |
||||
|
||||
def forward(self, x): |
||||
x = self.norm(x) |
||||
x = self.activation(x) |
||||
x = ShuffleLayerTrans(x, self.groups) |
||||
x = self.conv(x) # SIZE: N, C, H, W |
||||
N, C, H, W = x.shape |
||||
x = x.reshape((N, C, H * W)) |
||||
x = x.transpose((0, 2, 1)) # SIZE: N, HW, C |
||||
# x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C |
||||
x = paddle.matmul(x, self.index) |
||||
x = x.transpose((0, 2, 1)) # SIZE: N, C, HW |
||||
x = x.reshape((N, C, H, W)) # SIZE: N, C, HW |
||||
return x |
||||
|
||||
|
||||
class _SFR_DenseLayer(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se=False, ): |
||||
super(_SFR_DenseLayer, self).__init__() |
||||
self.group_1x1 = group_1x1 |
||||
self.group_3x3 = group_3x3 |
||||
self.group_trans = group_trans |
||||
self.use_se = use_se |
||||
# 1x1 conv i --> b*k |
||||
self.conv_1 = CondenseLGC( |
||||
in_channels, |
||||
bottleneck * growth_rate, |
||||
kernel_size=1, |
||||
groups=self.group_1x1, |
||||
activation=activation, ) |
||||
# 3x3 conv b*k --> k |
||||
self.conv_2 = Conv( |
||||
bottleneck * growth_rate, |
||||
growth_rate, |
||||
kernel_size=3, |
||||
padding=1, |
||||
groups=self.group_3x3, |
||||
activation=activation, ) |
||||
# 1x1 res conv k(8-16-32)--> i (k*l) |
||||
self.sfr = CondenseSFR( |
||||
growth_rate, |
||||
in_channels, |
||||
kernel_size=1, |
||||
groups=self.group_trans, |
||||
activation=activation, ) |
||||
if self.use_se: |
||||
self.se = SELayer(inplanes=growth_rate, reduction=1) |
||||
|
||||
def forward(self, x): |
||||
x_ = x |
||||
x = self.conv_1(x) |
||||
x = self.conv_2(x) |
||||
if self.use_se: |
||||
x = self.se(x) |
||||
sfr_feature = self.sfr(x) |
||||
y = x_ + sfr_feature |
||||
return paddle.concat([y, x], 1) |
||||
|
||||
|
||||
class _SFR_DenseBlock(nn.Sequential): |
||||
def __init__( |
||||
self, |
||||
num_layers, |
||||
in_channels, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se, ): |
||||
super(_SFR_DenseBlock, self).__init__() |
||||
for i in range(num_layers): |
||||
layer = _SFR_DenseLayer( |
||||
in_channels + i * growth_rate, |
||||
growth_rate, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
activation, |
||||
use_se, ) |
||||
self.add_sublayer("denselayer_%d" % (i + 1), layer) |
||||
|
||||
|
||||
class _Transition(nn.Layer): |
||||
def __init__(self): |
||||
super(_Transition, self).__init__() |
||||
self.pool = nn.AvgPool2D(kernel_size=2, stride=2) |
||||
|
||||
def forward(self, x): |
||||
x = self.pool(x) |
||||
return x |
||||
|
||||
|
||||
class CondenseNetV2(nn.Layer): |
||||
def __init__( |
||||
self, |
||||
stages, |
||||
growth, |
||||
HS_start_block, |
||||
SE_start_block, |
||||
fc_channel, |
||||
group_1x1, |
||||
group_3x3, |
||||
group_trans, |
||||
bottleneck, |
||||
last_se_reduction, |
||||
in_channels=3, |
||||
class_num=1000, ): |
||||
super(CondenseNetV2, self).__init__() |
||||
self.stages = stages |
||||
self.growth = growth |
||||
self.in_channels = in_channels |
||||
self.class_num = class_num |
||||
self.last_se_reduction = last_se_reduction |
||||
assert len(self.stages) == len(self.growth) |
||||
self.progress = 0.0 |
||||
|
||||
self.init_stride = 2 |
||||
self.pool_size = 7 |
||||
|
||||
self.features = nn.Sequential() |
||||
# Initial nChannels should be 3 |
||||
self.num_features = 2 * self.growth[0] |
||||
# Dense-block 1 (224x224) |
||||
self.features.add_sublayer( |
||||
"init_conv", |
||||
nn.Conv2D( |
||||
in_channels, |
||||
self.num_features, |
||||
kernel_size=3, |
||||
stride=self.init_stride, |
||||
padding=1, |
||||
bias_attr=False, ), ) |
||||
for i in range(len(self.stages)): |
||||
activation = "HS" if i >= HS_start_block else "ReLU" |
||||
use_se = True if i >= SE_start_block else False |
||||
# Dense-block i |
||||
self.add_block(i, group_1x1, group_3x3, group_trans, bottleneck, |
||||
activation, use_se) |
||||
|
||||
self.fc = nn.Linear(self.num_features, fc_channel) |
||||
self.fc_act = HS() |
||||
|
||||
# Classifier layer |
||||
if class_num > 0: |
||||
self.classifier = nn.Linear(fc_channel, class_num) |
||||
self._initialize() |
||||
|
||||
def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck, |
||||
activation, use_se): |
||||
# Check if ith is the last one |
||||
last = i == len(self.stages) - 1 |
||||
block = _SFR_DenseBlock( |
||||
num_layers=self.stages[i], |
||||
in_channels=self.num_features, |
||||
growth_rate=self.growth[i], |
||||
group_1x1=group_1x1, |
||||
group_3x3=group_3x3, |
||||
group_trans=group_trans, |
||||
bottleneck=bottleneck, |
||||
activation=activation, |
||||
use_se=use_se, ) |
||||
self.features.add_sublayer("denseblock_%d" % (i + 1), block) |
||||
self.num_features += self.stages[i] * self.growth[i] |
||||
if not last: |
||||
trans = _Transition() |
||||
self.features.add_sublayer("transition_%d" % (i + 1), trans) |
||||
else: |
||||
self.features.add_sublayer("norm_last", |
||||
nn.BatchNorm2D(self.num_features)) |
||||
self.features.add_sublayer("relu_last", nn.ReLU()) |
||||
self.features.add_sublayer("pool_last", |
||||
nn.AvgPool2D(self.pool_size)) |
||||
# if useSE: |
||||
self.features.add_sublayer( |
||||
"se_last", |
||||
SELayer( |
||||
self.num_features, reduction=self.last_se_reduction)) |
||||
|
||||
def forward(self, x): |
||||
features = self.features(x) |
||||
out = features.reshape((features.shape[0], -1)) |
||||
out = self.fc(out) |
||||
out = self.fc_act(out) |
||||
|
||||
if self.class_num > 0: |
||||
out = self.classifier(out) |
||||
|
||||
return out |
||||
|
||||
def _initialize(self): |
||||
# initialize |
||||
for m in self.sublayers(): |
||||
if isinstance(m, nn.Conv2D): |
||||
nn.initializer.KaimingNormal()(m.weight) |
||||
elif isinstance(m, nn.BatchNorm2D): |
||||
nn.initializer.Constant(value=1.0)(m.weight) |
||||
nn.initializer.Constant(value=0.0)(m.bias) |
||||
|
||||
|
||||
def CondenseNetV2_a(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[1, 1, 4, 6, 8], |
||||
growth=[8, 8, 16, 32, 64], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=828, |
||||
group_1x1=8, |
||||
group_3x3=8, |
||||
group_trans=8, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
||||
|
||||
|
||||
def CondenseNetV2_b(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[2, 4, 6, 8, 6], |
||||
growth=[6, 12, 24, 48, 96], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=1024, |
||||
group_1x1=6, |
||||
group_3x3=6, |
||||
group_trans=6, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
||||
|
||||
|
||||
def CondenseNetV2_c(**kwargs): |
||||
model = CondenseNetV2( |
||||
stages=[4, 6, 8, 10, 8], |
||||
growth=[8, 16, 32, 64, 128], |
||||
HS_start_block=2, |
||||
SE_start_block=3, |
||||
fc_channel=1024, |
||||
group_1x1=8, |
||||
group_3x3=8, |
||||
group_trans=8, |
||||
bottleneck=4, |
||||
last_se_reduction=16, |
||||
**kwargs) |
||||
return model |
@ -1,15 +0,0 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from .farseg import FarSeg |
@ -1,15 +0,0 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from .farseg import FarSeg |
@ -1,98 +0,0 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from paddle import nn |
||||
import paddle.nn.functional as F |
||||
from ..utils import (ConvReLU, kaiming_normal_init, constant_init) |
||||
|
||||
|
||||
class FPN(nn.Layer): |
||||
""" |
||||
Module that adds FPN on top of a list of feature maps. |
||||
The feature maps are currently supposed to be in increasing depth |
||||
order, and must be consecutive |
||||
""" |
||||
|
||||
def __init__(self, |
||||
in_channels_list, |
||||
out_channels, |
||||
conv_block=ConvReLU, |
||||
top_blocks=None): |
||||
super(FPN, self).__init__() |
||||
self.inner_blocks = [] |
||||
self.layer_blocks = [] |
||||
for idx, in_channels in enumerate(in_channels_list, 1): |
||||
inner_block = "fpn_inner{}".format(idx) |
||||
layer_block = "fpn_layer{}".format(idx) |
||||
if in_channels == 0: |
||||
continue |
||||
inner_block_module = conv_block(in_channels, out_channels, 1) |
||||
layer_block_module = conv_block(out_channels, out_channels, 3, 1) |
||||
self.add_sublayer(inner_block, inner_block_module) |
||||
self.add_sublayer(layer_block, layer_block_module) |
||||
for module in [inner_block_module, layer_block_module]: |
||||
for m in module.sublayers(): |
||||
if isinstance(m, nn.Conv2D): |
||||
kaiming_normal_init(m.weight) |
||||
self.inner_blocks.append(inner_block) |
||||
self.layer_blocks.append(layer_block) |
||||
self.top_blocks = top_blocks |
||||
|
||||
def forward(self, x): |
||||
last_inner = getattr(self, self.inner_blocks[-1])(x[-1]) |
||||
results = [getattr(self, self.layer_blocks[-1])(last_inner)] |
||||
for feature, inner_block, layer_block in zip( |
||||
x[:-1][::-1], self.inner_blocks[:-1][::-1], |
||||
self.layer_blocks[:-1][::-1]): |
||||
if not inner_block: |
||||
continue |
||||
inner_top_down = F.interpolate( |
||||
last_inner, scale_factor=2, mode="nearest") |
||||
inner_lateral = getattr(self, inner_block)(feature) |
||||
last_inner = inner_lateral + inner_top_down |
||||
results.insert(0, getattr(self, layer_block)(last_inner)) |
||||
if isinstance(self.top_blocks, LastLevelP6P7): |
||||
last_results = self.top_blocks(x[-1], results[-1]) |
||||
results.extend(last_results) |
||||
elif isinstance(self.top_blocks, LastLevelMaxPool): |
||||
last_results = self.top_blocks(results[-1]) |
||||
results.extend(last_results) |
||||
return tuple(results) |
||||
|
||||
|
||||
class LastLevelMaxPool(nn.Layer): |
||||
def forward(self, x): |
||||
return [F.max_pool2d(x, 1, 2, 0)] |
||||
|
||||
|
||||
class LastLevelP6P7(nn.Layer): |
||||
""" |
||||
This module is used in RetinaNet to generate extra layers, P6 and P7. |
||||
""" |
||||
|
||||
def __init__(self, in_channels, out_channels): |
||||
super(LastLevelP6P7, self).__init__() |
||||
self.p6 = nn.Conv2D(in_channels, out_channels, 3, 2, 1) |
||||
self.p7 = nn.Conv2D(out_channels, out_channels, 3, 2, 1) |
||||
for module in [self.p6, self.p7]: |
||||
for m in module.sublayers(): |
||||
kaiming_normal_init(m.weight) |
||||
constant_init(m.bias, value=0) |
||||
self.use_P5 = in_channels == out_channels |
||||
|
||||
def forward(self, c5, p5): |
||||
x = p5 if self.use_P5 else c5 |
||||
p6 = self.p6(x) |
||||
p7 = self.p7(F.relu(p6)) |
||||
return [p6, p7] |
@ -1,23 +0,0 @@ |
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import paddle.nn as nn |
||||
|
||||
|
||||
class Identity(nn.Layer): |
||||
def __init__(self, *args, **kwargs): |
||||
super(Identity, self).__init__() |
||||
|
||||
def forward(self, input): |
||||
return input |
@ -0,0 +1,49 @@ |
||||
import paddlers as pdrs |
||||
from paddlers import transforms as T |
||||
|
||||
# 定义训练和验证时的transforms |
||||
train_transforms = T.Compose([ |
||||
T.BandSelecting([5, 10, 15, 20, 25]), # for tet |
||||
T.Resize(target_size=224), |
||||
T.RandomHorizontalFlip(), |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
eval_transforms = T.Compose([ |
||||
T.BandSelecting([5, 10, 15, 20, 25]), |
||||
T.Resize(target_size=224), |
||||
T.Normalize( |
||||
mean=[0.5, 0.5, 0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5, 0.5, 0.5]), |
||||
]) |
||||
|
||||
# 定义训练和验证所用的数据集 |
||||
train_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir='tutorials/train/classification/DataSet', |
||||
file_list='tutorials/train/classification/DataSet/train_list.txt', |
||||
label_list='tutorials/train/classification/DataSet/label_list.txt', |
||||
transforms=train_transforms, |
||||
num_workers=0, |
||||
shuffle=True) |
||||
|
||||
eval_dataset = pdrs.datasets.ClasDataset( |
||||
data_dir='tutorials/train/classification/DataSet', |
||||
file_list='tutorials/train/classification/DataSet/val_list.txt', |
||||
label_list='tutorials/train/classification/DataSet/label_list.txt', |
||||
transforms=eval_transforms, |
||||
num_workers=0, |
||||
shuffle=False) |
||||
|
||||
# 初始化模型 |
||||
num_classes = len(train_dataset.labels) |
||||
model = pdrs.tasks.CondenseNetV2_b(in_channels=5, num_classes=num_classes) |
||||
|
||||
# 进行训练 |
||||
model.train( |
||||
num_epochs=100, |
||||
pretrain_weights=None, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=4, |
||||
eval_dataset=eval_dataset, |
||||
learning_rate=3e-4, |
||||
save_dir='output/condensenetv2_b') |
Loading…
Reference in new issue