[Fix] Clean chinese punctuation

own
geoyee 3 years ago
parent 0c35d0e108
commit 354b8ea3a2
  1. 19
      paddlers/datasets/raster.py
  2. 2
      paddlers/tools/yolo_cluster.py
  3. 4
      paddlers/transforms/batch_operators.py
  4. 5
      paddlers/transforms/img_decoder.py
  5. 16
      paddlers/transforms/operators.py
  6. 12
      paddlers/utils/convert.py
  7. 3
      requirements.txt

@ -27,25 +27,23 @@ class Raster:
def __init__(self,
path: str,
band_list: Union[List[int], Tuple[int], None]=None,
is_sar: bool=False, # TODO: Remove this param
is_src: bool=False) -> None:
to_uint8: bool=False) -> None:
""" Class of read raster.
Args:
path (str): The path of raster.
band_list (Union[List[int], Tuple[int], None], optional):
band list (start with 1) or None (all of bands). Defaults to None.
is_sar (bool, optional): The raster is SAR or not. Defaults to False.
is_src (bool, optional):
Return raw data or not (convert uint8/float32). Defaults to False.
to_uint8 (bool, optional):
Convert uint8 or return raw data. Defaults to False.
"""
super(Raster, self).__init__()
if osp.exists(path):
self.path = path
self.__src_data = gdal.Open(path)
self.__src_data = np.load(path) if path.split(".")[-1] == "npy" \
else gdal.Open(path)
self.__getInfo()
self.is_sar = is_sar
self.is_src = is_src
self.to_uint8 = to_uint8
self.setBands(band_list)
else:
raise ValueError("The path {0} not exists.".format(path))
@ -107,11 +105,12 @@ class Raster:
band_array.append(band_i)
ima = np.stack(band_array, axis=0)
if self.bands == 1:
if self.is_sar:
# the type is complex means this is a SAR data
if isinstance(type(ima[0, 0]), complex):
ima = abs(ima)
else:
ima = ima.transpose((1, 2, 0))
if self.is_src is False:
if self.to_uint8 is True:
ima = raster2uint8(ima)
return ima

@ -99,7 +99,7 @@ class YOLOAnchorCluster(BaseAnchorCluster):
num_anchors (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
image_size (list or int): [h, w], being an int means image height and image width are the same.
cache (bool): whether using cache Defaults to True.
cache (bool): whether using cache. Defaults to True.
cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset. Defaults to None.
iters (int, optional): iters of kmeans algorithm. Defaults to 300.
gen_iters (int, optional): iters of genetic algorithm. Defaults to 1000.

@ -69,7 +69,7 @@ class BatchRandomResize(Transform):
"""
Resize a batch of input to random sizes.
AttentionIf interp is 'RANDOM', the interpolation method will be chose randomly.
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
Args:
target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
@ -108,7 +108,7 @@ class BatchRandomResize(Transform):
class BatchRandomResizeByShort(Transform):
"""Resize a batch of input to random sizes with keeping the aspect ratio.
AttentionIf interp is 'RANDOM', the interpolation method will be chose randomly.
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
Args:
short_sizes (List[int], Tuple[int]): Target sizes of the shorter side of the image(s).

@ -1,5 +1,3 @@
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -21,6 +19,7 @@ import copy
import random
import imghdr
from PIL import Image
try:
from collections.abc import Sequence
except Exception:
@ -103,7 +102,7 @@ class ImgDecode(Transform):
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
cv2.IMREAD_ANYCOLOR | cv2.IMREAD_COLOR)
else:
return cv2.imread(im_file, cv2.IMREAD_ANYDEPTH |
return cv2.imread(img_path, cv2.IMREAD_ANYDEPTH |
cv2.IMREAD_ANYCOLOR)
elif ext == '.npy':
return np.load(img_path)

@ -204,9 +204,9 @@ class Resize(Transform):
"""
Resize input.
- If target_size is an intresize the image(s) to (target_size, target_size).
- If target_size is an int, resize the image(s) to (target_size, target_size).
- If target_size is a list or tuple, resize the image(s) to target_size.
AttentionIf interp is 'RANDOM', the interpolation method will be chose randomly.
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
Args:
target_size (int, List[int] or Tuple[int]): Target size. If int, the height and width share the same target_size.
@ -315,7 +315,7 @@ class RandomResize(Transform):
"""
Resize input to random sizes.
AttentionIf interp is 'RANDOM', the interpolation method will be chose randomly.
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
Args:
target_sizes (List[int], List[list or tuple] or Tuple[list or tuple]):
@ -356,7 +356,7 @@ class ResizeByShort(Transform):
"""
Resize input with keeping the aspect ratio.
AttentionIf interp is 'RANDOM', the interpolation method will be chose randomly.
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
Args:
short_size (int): Target size of the shorter side of the image(s).
@ -395,7 +395,7 @@ class RandomResizeByShort(Transform):
"""
Resize input to random sizes with keeping the aspect ratio.
AttentionIf interp is 'RANDOM', the interpolation method will be chose randomly.
Attention: If interp is 'RANDOM', the interpolation method will be chose randomly.
Args:
short_sizes (List[int]): Target size of the shorter side of the image(s).
@ -833,8 +833,8 @@ class RandomCrop(Transform):
class RandomScaleAspect(Transform):
"""
Crop input image(s) and resize back to original sizes.
Args
min_scale (float)Minimum ratio between the cropped region and the original image.
Args:
min_scale (float): Minimum ratio between the cropped region and the original image.
If 0, image(s) will not be cropped. Defaults to .5.
aspect_ratio (float): Aspect ratio of cropped region. Defaults to .33.
"""
@ -1230,7 +1230,7 @@ class RandomBlur(Transform):
"""
Randomly blur input image(s).
Args
Args:
prob (float): Probability of blurring.
"""

@ -39,7 +39,7 @@ def raster2uint8(image: np.ndarray) -> np.ndarray:
# 2% linear stretch
def _two_percentLinear(image: np.ndarray, max_out: int=255, min_out: int=0) -> np.ndarray:
def _gray_process(gray, maxout=max_out, minout=min_out):
# Get the corresponding gray level at 98% histogram
# get the corresponding gray level at 98% histogram
high_value = np.percentile(gray, 98)
low_value = np.percentile(gray, 2)
truncated_gray = np.clip(gray, a_min=low_value, a_max=high_value)
@ -55,7 +55,7 @@ def _two_percentLinear(image: np.ndarray, max_out: int=255, min_out: int=0) -> n
return np.uint8(result)
# Simple image standardization
# simple image standardization
def _sample_norm(image: np.ndarray, NUMS: int=65536) -> np.ndarray:
stretches = []
if len(image.shape) == 3:
@ -69,14 +69,14 @@ def _sample_norm(image: np.ndarray, NUMS: int=65536) -> np.ndarray:
return np.uint8(stretched_img * 255)
# Histogram equalization
# histogram equalization
def _stretch(ima: np.ndarray, NUMS: int) -> np.ndarray:
hist = _histogram(ima, NUMS)
lut = []
for bt in range(0, len(hist), NUMS):
# Step size
# step size
step = reduce(operator.add, hist[bt : bt + NUMS]) / (NUMS - 1)
# Create balanced lookup table
# create balanced lookup table
n = 0
for i in range(NUMS):
lut.append(n / step)
@ -85,7 +85,7 @@ def _stretch(ima: np.ndarray, NUMS: int) -> np.ndarray:
return ima
# Calculate histogram
# calculate histogram
def _histogram(ima: np.ndarray, NUMS: int) -> np.ndarray:
bins = list(range(0, NUMS))
flat = ima.flat

@ -8,9 +8,10 @@ paddleslim == 2.2.1
shapely
paddlepaddle-gpu >= 2.2.0
opencv-python
scikit-learn==0.20.3
scikit-learn == 0.20.3
lap
motmetrics
matplotlib
chardet
openpyxl
GDAL >= 3.2.2
Loading…
Cancel
Save