parent
343f646f7d
commit
33b5f0fd3e
6 changed files with 362 additions and 0 deletions
@ -0,0 +1,15 @@ |
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
||||||
|
# |
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||||
|
# you may not use this file except in compliance with the License. |
||||||
|
# You may obtain a copy of the License at |
||||||
|
# |
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||||
|
# |
||||||
|
# Unless required by applicable law or agreed to in writing, software |
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||||
|
# See the License for the specific language governing permissions and |
||||||
|
# limitations under the License. |
||||||
|
|
||||||
|
from .rcan import RCAN |
@ -0,0 +1,25 @@ |
|||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
||||||
|
# |
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||||
|
# you may not use this file except in compliance with the License. |
||||||
|
# You may obtain a copy of the License at |
||||||
|
# |
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||||
|
# |
||||||
|
# Unless required by applicable law or agreed to in writing, software |
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||||
|
# See the License for the specific language governing permissions and |
||||||
|
# limitations under the License. |
||||||
|
|
||||||
|
import copy |
||||||
|
from ....models.ppgan.utils.registry import Registry |
||||||
|
|
||||||
|
GENERATORS = Registry("GENERATOR") |
||||||
|
|
||||||
|
|
||||||
|
def build_generator(cfg): |
||||||
|
cfg_copy = copy.deepcopy(cfg) |
||||||
|
name = cfg_copy.pop('name') |
||||||
|
generator = GENERATORS.get(name)(**cfg_copy) |
||||||
|
return generator |
@ -0,0 +1,190 @@ |
|||||||
|
# base on https://github.com/kongdebug/RCAN-Paddle |
||||||
|
import math |
||||||
|
import paddle |
||||||
|
import paddle.nn as nn |
||||||
|
|
||||||
|
from .builder import GENERATORS |
||||||
|
|
||||||
|
|
||||||
|
def default_conv(in_channels, out_channels, kernel_size, bias=True): |
||||||
|
return nn.Conv2D( |
||||||
|
in_channels, |
||||||
|
out_channels, |
||||||
|
kernel_size, |
||||||
|
padding=(kernel_size // 2), |
||||||
|
bias_attr=bias) |
||||||
|
|
||||||
|
|
||||||
|
class MeanShift(nn.Conv2D): |
||||||
|
def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1): |
||||||
|
super(MeanShift, self).__init__(3, 3, kernel_size=1) |
||||||
|
std = paddle.to_tensor(rgb_std) |
||||||
|
self.weight.set_value(paddle.eye(3).reshape([3, 3, 1, 1])) |
||||||
|
self.weight.set_value(self.weight / (std.reshape([3, 1, 1, 1]))) |
||||||
|
|
||||||
|
mean = paddle.to_tensor(rgb_mean) |
||||||
|
self.bias.set_value(sign * rgb_range * mean / std) |
||||||
|
|
||||||
|
self.weight.trainable = False |
||||||
|
self.bias.trainable = False |
||||||
|
|
||||||
|
|
||||||
|
## Channel Attention (CA) Layer |
||||||
|
class CALayer(nn.Layer): |
||||||
|
def __init__(self, channel, reduction=16): |
||||||
|
super(CALayer, self).__init__() |
||||||
|
# global average pooling: feature --> point |
||||||
|
self.avg_pool = nn.AdaptiveAvgPool2D(1) |
||||||
|
# feature channel downscale and upscale --> channel weight |
||||||
|
self.conv_du = nn.Sequential( |
||||||
|
nn.Conv2D( |
||||||
|
channel, channel // reduction, 1, padding=0, bias_attr=True), |
||||||
|
nn.ReLU(), |
||||||
|
nn.Conv2D( |
||||||
|
channel // reduction, channel, 1, padding=0, bias_attr=True), |
||||||
|
nn.Sigmoid()) |
||||||
|
|
||||||
|
def forward(self, x): |
||||||
|
y = self.avg_pool(x) |
||||||
|
y = self.conv_du(y) |
||||||
|
return x * y |
||||||
|
|
||||||
|
|
||||||
|
class RCAB(nn.Layer): |
||||||
|
def __init__(self, |
||||||
|
conv, |
||||||
|
n_feat, |
||||||
|
kernel_size, |
||||||
|
reduction=16, |
||||||
|
bias=True, |
||||||
|
bn=False, |
||||||
|
act=nn.ReLU(), |
||||||
|
res_scale=1): |
||||||
|
super(RCAB, self).__init__() |
||||||
|
modules_body = [] |
||||||
|
for i in range(2): |
||||||
|
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias)) |
||||||
|
if bn: modules_body.append(nn.BatchNorm2D(n_feat)) |
||||||
|
if i == 0: modules_body.append(act) |
||||||
|
modules_body.append(CALayer(n_feat, reduction)) |
||||||
|
self.body = nn.Sequential(*modules_body) |
||||||
|
self.res_scale = res_scale |
||||||
|
|
||||||
|
def forward(self, x): |
||||||
|
res = self.body(x) |
||||||
|
res += x |
||||||
|
return res |
||||||
|
|
||||||
|
|
||||||
|
## Residual Group (RG) |
||||||
|
class ResidualGroup(nn.Layer): |
||||||
|
def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, |
||||||
|
n_resblocks): |
||||||
|
super(ResidualGroup, self).__init__() |
||||||
|
modules_body = [] |
||||||
|
modules_body = [ |
||||||
|
RCAB( |
||||||
|
conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(), res_scale=1) \ |
||||||
|
for _ in range(n_resblocks)] |
||||||
|
modules_body.append(conv(n_feat, n_feat, kernel_size)) |
||||||
|
self.body = nn.Sequential(*modules_body) |
||||||
|
|
||||||
|
def forward(self, x): |
||||||
|
res = self.body(x) |
||||||
|
res += x |
||||||
|
return res |
||||||
|
|
||||||
|
|
||||||
|
class Upsampler(nn.Sequential): |
||||||
|
def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True): |
||||||
|
m = [] |
||||||
|
if (scale & (scale - 1)) == 0: # Is scale = 2^n? |
||||||
|
for _ in range(int(math.log(scale, 2))): |
||||||
|
m.append(conv(n_feats, 4 * n_feats, 3, bias)) |
||||||
|
m.append(nn.PixelShuffle(2)) |
||||||
|
if bn: m.append(nn.BatchNorm2D(n_feats)) |
||||||
|
|
||||||
|
if act == 'relu': |
||||||
|
m.append(nn.ReLU()) |
||||||
|
elif act == 'prelu': |
||||||
|
m.append(nn.PReLU(n_feats)) |
||||||
|
|
||||||
|
elif scale == 3: |
||||||
|
m.append(conv(n_feats, 9 * n_feats, 3, bias)) |
||||||
|
m.append(nn.PixelShuffle(3)) |
||||||
|
if bn: m.append(nn.BatchNorm2D(n_feats)) |
||||||
|
|
||||||
|
if act == 'relu': |
||||||
|
m.append(nn.ReLU()) |
||||||
|
elif act == 'prelu': |
||||||
|
m.append(nn.PReLU(n_feats)) |
||||||
|
else: |
||||||
|
raise NotImplementedError |
||||||
|
|
||||||
|
super(Upsampler, self).__init__(*m) |
||||||
|
|
||||||
|
|
||||||
|
@GENERATORS.register() |
||||||
|
class RCAN(nn.Layer): |
||||||
|
def __init__( |
||||||
|
self, |
||||||
|
scale, |
||||||
|
n_resgroups, |
||||||
|
n_resblocks, |
||||||
|
n_feats=64, |
||||||
|
n_colors=3, |
||||||
|
rgb_range=255, |
||||||
|
kernel_size=3, |
||||||
|
reduction=16, |
||||||
|
conv=default_conv, ): |
||||||
|
super(RCAN, self).__init__() |
||||||
|
self.scale = scale |
||||||
|
act = nn.ReLU() |
||||||
|
|
||||||
|
n_resgroups = n_resgroups |
||||||
|
n_resblocks = n_resblocks |
||||||
|
n_feats = n_feats |
||||||
|
kernel_size = kernel_size |
||||||
|
reduction = reduction |
||||||
|
scale = scale |
||||||
|
act = nn.ReLU() |
||||||
|
|
||||||
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
||||||
|
rgb_std = (1.0, 1.0, 1.0) |
||||||
|
self.sub_mean = MeanShift(rgb_range, rgb_mean, rgb_std) |
||||||
|
|
||||||
|
# define head module |
||||||
|
modules_head = [conv(n_colors, n_feats, kernel_size)] |
||||||
|
|
||||||
|
# define body module |
||||||
|
modules_body = [ |
||||||
|
ResidualGroup( |
||||||
|
conv, n_feats, kernel_size, reduction, act=act, res_scale= 1, n_resblocks=n_resblocks) \ |
||||||
|
for _ in range(n_resgroups)] |
||||||
|
|
||||||
|
modules_body.append(conv(n_feats, n_feats, kernel_size)) |
||||||
|
|
||||||
|
# define tail module |
||||||
|
modules_tail = [ |
||||||
|
Upsampler( |
||||||
|
conv, scale, n_feats, act=False), |
||||||
|
conv(n_feats, n_colors, kernel_size) |
||||||
|
] |
||||||
|
|
||||||
|
self.head = nn.Sequential(*modules_head) |
||||||
|
self.body = nn.Sequential(*modules_body) |
||||||
|
self.tail = nn.Sequential(*modules_tail) |
||||||
|
|
||||||
|
self.add_mean = MeanShift(rgb_range, rgb_mean, rgb_std, 1) |
||||||
|
|
||||||
|
def forward(self, x): |
||||||
|
x = self.sub_mean(x) |
||||||
|
x = self.head(x) |
||||||
|
|
||||||
|
res = self.body(x) |
||||||
|
res += x |
||||||
|
|
||||||
|
x = self.tail(res) |
||||||
|
x = self.add_mean(x) |
||||||
|
|
||||||
|
return x |
@ -0,0 +1,93 @@ |
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. |
||||||
|
# |
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||||
|
# you may not use this file except in compliance with the License. |
||||||
|
# You may obtain a copy of the License at |
||||||
|
# |
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||||
|
# |
||||||
|
# Unless required by applicable law or agreed to in writing, software |
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||||
|
# See the License for the specific language governing permissions and |
||||||
|
# limitations under the License. |
||||||
|
|
||||||
|
import paddle |
||||||
|
import paddle.nn as nn |
||||||
|
|
||||||
|
from .generators.builder import build_generator |
||||||
|
from ...models.ppgan.models.criterions.builder import build_criterion |
||||||
|
from ...models.ppgan.models.base_model import BaseModel |
||||||
|
from ...models.ppgan.models.builder import MODELS |
||||||
|
from ...models.ppgan.utils.visual import tensor2img |
||||||
|
from ...models.ppgan.modules.init import reset_parameters |
||||||
|
|
||||||
|
|
||||||
|
@MODELS.register() |
||||||
|
class RCANModel(BaseModel): |
||||||
|
"""Base SR model for single image super-resolution. |
||||||
|
""" |
||||||
|
|
||||||
|
def __init__(self, generator, pixel_criterion=None, use_init_weight=False): |
||||||
|
""" |
||||||
|
Args: |
||||||
|
generator (dict): config of generator. |
||||||
|
pixel_criterion (dict): config of pixel criterion. |
||||||
|
""" |
||||||
|
super(RCANModel, self).__init__() |
||||||
|
|
||||||
|
self.nets['generator'] = build_generator(generator) |
||||||
|
|
||||||
|
if pixel_criterion: |
||||||
|
self.pixel_criterion = build_criterion(pixel_criterion) |
||||||
|
if use_init_weight: |
||||||
|
init_sr_weight(self.nets['generator']) |
||||||
|
|
||||||
|
def setup_input(self, input): |
||||||
|
self.lq = paddle.to_tensor(input['lq']) |
||||||
|
self.visual_items['lq'] = self.lq |
||||||
|
if 'gt' in input: |
||||||
|
self.gt = paddle.to_tensor(input['gt']) |
||||||
|
self.visual_items['gt'] = self.gt |
||||||
|
self.image_paths = input['lq_path'] |
||||||
|
|
||||||
|
def forward(self): |
||||||
|
pass |
||||||
|
|
||||||
|
def train_iter(self, optims=None): |
||||||
|
optims['optim'].clear_grad() |
||||||
|
|
||||||
|
self.output = self.nets['generator'](self.lq) |
||||||
|
self.visual_items['output'] = self.output |
||||||
|
# pixel loss |
||||||
|
loss_pixel = self.pixel_criterion(self.output, self.gt) |
||||||
|
self.losses['loss_pixel'] = loss_pixel |
||||||
|
|
||||||
|
loss_pixel.backward() |
||||||
|
optims['optim'].step() |
||||||
|
|
||||||
|
def test_iter(self, metrics=None): |
||||||
|
self.nets['generator'].eval() |
||||||
|
with paddle.no_grad(): |
||||||
|
self.output = self.nets['generator'](self.lq) |
||||||
|
self.visual_items['output'] = self.output |
||||||
|
self.nets['generator'].train() |
||||||
|
|
||||||
|
out_img = [] |
||||||
|
gt_img = [] |
||||||
|
for out_tensor, gt_tensor in zip(self.output, self.gt): |
||||||
|
out_img.append(tensor2img(out_tensor, (0., 255.))) |
||||||
|
gt_img.append(tensor2img(gt_tensor, (0., 255.))) |
||||||
|
|
||||||
|
if metrics is not None: |
||||||
|
for metric in metrics.values(): |
||||||
|
metric.update(out_img, gt_img) |
||||||
|
|
||||||
|
|
||||||
|
def init_sr_weight(net): |
||||||
|
def reset_func(m): |
||||||
|
if hasattr(m, 'weight') and ( |
||||||
|
not isinstance(m, (nn.BatchNorm, nn.BatchNorm2D))): |
||||||
|
reset_parameters(m) |
||||||
|
|
||||||
|
net.apply(reset_func) |
Loading…
Reference in new issue