[Feature] Add UNetEarlyFusion

own
Bobholamovic 3 years ago
parent bfd2554f98
commit 32babb3418
  1. 1
      paddlers/models/cd/models/__init__.py
  2. 15
      paddlers/models/cd/models/layers/__init__.py
  3. 140
      paddlers/models/cd/models/layers/blocks.py
  4. 82
      paddlers/models/cd/models/param_init.py
  5. 201
      paddlers/models/cd/models/unet_ef.py
  6. 20
      paddlers/tasks/changedetector.py

@ -13,3 +13,4 @@
# limitations under the License. # limitations under the License.
from .cdnet import CDNet from .cdnet import CDNet
from .unet_ef import UNetEarlyFusion

@ -0,0 +1,15 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .blocks import *

@ -0,0 +1,140 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
__all__ = [
'BasicConv', 'Conv1x1', 'Conv3x3', 'Conv7x7',
'MaxPool2x2', 'MaxUnPool2x2',
'ConvTransposed3x3',
'Identity'
]
def get_norm_layer():
# TODO: select appropriate norm layer.
return nn.BatchNorm2D
def get_act_layer():
# TODO: select appropriate activation layer.
return nn.ReLU
def make_norm(*args, **kwargs):
norm_layer = get_norm_layer()
return norm_layer(*args, **kwargs)
def make_act(*args, **kwargs):
act_layer = get_act_layer()
return act_layer(*args, **kwargs)
class BasicConv(nn.Layer):
def __init__(
self, in_ch, out_ch,
kernel_size, pad_mode='constant',
bias='auto', norm=False, act=False,
**kwargs
):
super().__init__()
seq = []
if kernel_size >= 2:
seq.append(nn.Pad2D(kernel_size//2, mode=pad_mode))
seq.append(
nn.Conv2D(
in_ch, out_ch, kernel_size,
stride=1, padding=0,
bias_attr=(False if norm else None) if bias=='auto' else bias,
**kwargs
)
)
if norm:
if norm is True:
norm = make_norm(out_ch)
seq.append(norm)
if act:
if act is True:
act = make_act()
seq.append(act)
self.seq = nn.Sequential(*seq)
def forward(self, x):
return self.seq(x)
class Conv1x1(BasicConv):
def __init__(self, in_ch, out_ch, pad_mode='constant', bias='auto', norm=False, act=False, **kwargs):
super().__init__(in_ch, out_ch, 1, pad_mode=pad_mode, bias=bias, norm=norm, act=act, **kwargs)
class Conv3x3(BasicConv):
def __init__(self, in_ch, out_ch, pad_mode='constant', bias='auto', norm=False, act=False, **kwargs):
super().__init__(in_ch, out_ch, 3, pad_mode=pad_mode, bias=bias, norm=norm, act=act, **kwargs)
class Conv7x7(BasicConv):
def __init__(self, in_ch, out_ch, pad_mode='constant', bias='auto', norm=False, act=False, **kwargs):
super().__init__(in_ch, out_ch, 7, pad_mode=pad_mode, bias=bias, norm=norm, act=act, **kwargs)
class MaxPool2x2(nn.MaxPool2D):
def __init__(self, **kwargs):
super().__init__(kernel_size=2, stride=(2,2), padding=(0,0), **kwargs)
class MaxUnPool2x2(nn.MaxUnPool2D):
def __init__(self, **kwargs):
super().__init__(kernel_size=2, stride=(2,2), padding=(0,0), **kwargs)
class ConvTransposed3x3(nn.Layer):
def __init__(
self, in_ch, out_ch,
bias='auto', norm=False, act=False,
**kwargs
):
super().__init__()
seq = []
seq.append(
nn.Conv2DTranspose(
in_ch, out_ch, 3,
stride=2, padding=1,
bias_attr=(False if norm else None) if bias=='auto' else bias,
**kwargs
)
)
if norm:
if norm is True:
norm = make_norm(out_ch)
seq.append(norm)
if act:
if act is True:
act = make_act()
seq.append(act)
self.seq = nn.Sequential(*seq)
def forward(self, x):
return self.seq(x)
class Identity(nn.Layer):
"""A placeholder identity operator that accepts exactly one argument."""
def __init__(self, *args, **kwargs):
super().__init__()
def forward(self, x):
return x

@ -0,0 +1,82 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
import paddle.nn.functional as F
def normal_init(param, *args, **kwargs):
"""
Initialize parameters with a normal distribution.
Args:
param (Tensor): The tensor that needs to be initialized.
Returns:
The initialized parameters.
"""
return nn.initializer.Normal(*args, **kwargs)(param)
def kaiming_normal_init(param, *args, **kwargs):
"""
Initialize parameters with the Kaiming normal distribution.
For more information about the Kaiming initialization method, please refer to
https://arxiv.org/abs/1502.01852
Args:
param (Tensor): The tensor that needs to be initialized.
Returns:
The initialized parameters.
"""
return nn.initializer.KaimingNormal(*args, **kwargs)(param)
def constant_init(param, *args, **kwargs):
"""
Initialize parameters with constants.
Args:
param (Tensor): The tensor that needs to be initialized.
Returns:
The initialized parameters.
"""
return nn.initializer.Constant(*args, **kwargs)(param)
class KaimingInitMixin:
"""
A mix-in that provides the Kaiming initialization functionality.
Examples:
from paddlers.models.cd.models.param_init import KaimingInitMixin
class CustomNet(nn.Layer, KaimingInitMixin):
def __init__(self, num_channels, num_classes):
super().__init__()
self.conv = nn.Conv2D(num_channels, num_classes, 3, 1, 0, bias_attr=False)
self.bn = nn.BatchNorm2D(num_classes)
self.init_weight()
"""
def init_weight(self):
for layer in self.sublayers():
if isinstance(layer, nn.Conv2D):
kaiming_normal_init(layer.weight)
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
constant_init(layer.weight, value=1)
constant_init(layer.bias, value=0)

@ -0,0 +1,201 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .layers import Conv3x3, MaxPool2x2, ConvTransposed3x3, Identity
from .param_init import normal_init, constant_init
class UNetEarlyFusion(nn.Layer):
"""
The FC-EF implementation based on PaddlePaddle.
The original article refers to
Caye Daudt, R., et al. "Fully convolutional siamese networks for change detection"
(https://arxiv.org/abs/1810.08462)
Args:
in_channels (int): The number of bands of the input images.
num_classes (int): The number of target classes.
use_dropout (bool, optional): A bool value that indicates whether to use dropout layers.
When the model is trained on a relatively small dataset, the dropout layers help prevent
overfitting. Default: False.
"""
def __init__(
self,
in_channels,
num_classes,
use_dropout=False
):
super().__init__()
C1, C2, C3, C4, C5 = 16, 32, 64, 128, 256
self.use_dropout = use_dropout
self.conv11 = Conv3x3(in_channels, C1, norm=True, act=True)
self.do11 = self._make_dropout()
self.conv12 = Conv3x3(C1, C1, norm=True, act=True)
self.do12 = self._make_dropout()
self.pool1 = MaxPool2x2()
self.conv21 = Conv3x3(C1, C2, norm=True, act=True)
self.do21 = self._make_dropout()
self.conv22 = Conv3x3(C2, C2, norm=True, act=True)
self.do22 = self._make_dropout()
self.pool2 = MaxPool2x2()
self.conv31 = Conv3x3(C2, C3, norm=True, act=True)
self.do31 = self._make_dropout()
self.conv32 = Conv3x3(C3, C3, norm=True, act=True)
self.do32 = self._make_dropout()
self.conv33 = Conv3x3(C3, C3, norm=True, act=True)
self.do33 = self._make_dropout()
self.pool3 = MaxPool2x2()
self.conv41 = Conv3x3(C3, C4, norm=True, act=True)
self.do41 = self._make_dropout()
self.conv42 = Conv3x3(C4, C4, norm=True, act=True)
self.do42 = self._make_dropout()
self.conv43 = Conv3x3(C4, C4, norm=True, act=True)
self.do43 = self._make_dropout()
self.pool4 = MaxPool2x2()
self.upconv4 = ConvTransposed3x3(C4, C4, output_padding=1)
self.conv43d = Conv3x3(C5, C4, norm=True, act=True)
self.do43d = self._make_dropout()
self.conv42d = Conv3x3(C4, C4, norm=True, act=True)
self.do42d = self._make_dropout()
self.conv41d = Conv3x3(C4, C3, norm=True, act=True)
self.do41d = self._make_dropout()
self.upconv3 = ConvTransposed3x3(C3, C3, output_padding=1)
self.conv33d = Conv3x3(C4, C3, norm=True, act=True)
self.do33d = self._make_dropout()
self.conv32d = Conv3x3(C3, C3, norm=True, act=True)
self.do32d = self._make_dropout()
self.conv31d = Conv3x3(C3, C2, norm=True, act=True)
self.do31d = self._make_dropout()
self.upconv2 = ConvTransposed3x3(C2, C2, output_padding=1)
self.conv22d = Conv3x3(C3, C2, norm=True, act=True)
self.do22d = self._make_dropout()
self.conv21d = Conv3x3(C2, C1, norm=True, act=True)
self.do21d = self._make_dropout()
self.upconv1 = ConvTransposed3x3(C1, C1, output_padding=1)
self.conv12d = Conv3x3(C2, C1, norm=True, act=True)
self.do12d = self._make_dropout()
self.conv11d = Conv3x3(C1, num_classes)
self.init_weight()
def forward(self, t1, t2):
x = paddle.concat([t1, t2], axis=1)
# Stage 1
x11 = self.do11(self.conv11(x))
x12 = self.do12(self.conv12(x11))
x1p = self.pool1(x12)
# Stage 2
x21 = self.do21(self.conv21(x1p))
x22 = self.do22(self.conv22(x21))
x2p = self.pool2(x22)
# Stage 3
x31 = self.do31(self.conv31(x2p))
x32 = self.do32(self.conv32(x31))
x33 = self.do33(self.conv33(x32))
x3p = self.pool3(x33)
# Stage 4
x41 = self.do41(self.conv41(x3p))
x42 = self.do42(self.conv42(x41))
x43 = self.do43(self.conv43(x42))
x4p = self.pool4(x43)
# Stage 4d
x4d = self.upconv4(x4p)
pad4 = (
0,
paddle.shape(x43)[3]-paddle.shape(x4d)[3],
0,
paddle.shape(x43)[2]-paddle.shape(x4d)[2]
)
x4d = paddle.concat([F.pad(x4d, pad=pad4, mode='replicate'), x43], 1)
x43d = self.do43d(self.conv43d(x4d))
x42d = self.do42d(self.conv42d(x43d))
x41d = self.do41d(self.conv41d(x42d))
# Stage 3d
x3d = self.upconv3(x41d)
pad3 = (
0,
paddle.shape(x33)[3]-paddle.shape(x3d)[3],
0,
paddle.shape(x33)[2]-paddle.shape(x3d)[2]
)
x3d = paddle.concat([F.pad(x3d, pad=pad3, mode='replicate'), x33], 1)
x33d = self.do33d(self.conv33d(x3d))
x32d = self.do32d(self.conv32d(x33d))
x31d = self.do31d(self.conv31d(x32d))
# Stage 2d
x2d = self.upconv2(x31d)
pad2 = (
0,
paddle.shape(x22)[3]-paddle.shape(x2d)[3],
0,
paddle.shape(x22)[2]-paddle.shape(x2d)[2]
)
x2d = paddle.concat([F.pad(x2d, pad=pad2, mode='replicate'), x22], 1)
x22d = self.do22d(self.conv22d(x2d))
x21d = self.do21d(self.conv21d(x22d))
# Stage 1d
x1d = self.upconv1(x21d)
pad1 = (
0,
paddle.shape(x12)[3]-paddle.shape(x1d)[3],
0,
paddle.shape(x12)[2]-paddle.shape(x1d)[2]
)
x1d = paddle.concat([F.pad(x1d, pad=pad1, mode='replicate'), x12], 1)
x12d = self.do12d(self.conv12d(x1d))
x11d = self.conv11d(x12d)
return x11d,
def init_weight(self):
for sublayer in self.sublayers():
if isinstance(sublayer, nn.Conv2D):
normal_init(sublayer.weight, std=0.001)
elif isinstance(sublayer, (nn.BatchNorm, nn.SyncBatchNorm)):
constant_init(sublayer.weight, value=1.0)
constant_init(sublayer.bias, value=0.0)
def _make_dropout(self):
if self.use_dropout:
return nn.Dropout2D(p=0.2)
else:
return Identity()

@ -31,7 +31,7 @@ from paddlers.utils.checkpoint import seg_pretrain_weights_dict
from paddlers.transforms import ImgDecoder, Resize from paddlers.transforms import ImgDecoder, Resize
import paddlers.models.cd as cd import paddlers.models.cd as cd
__all__ = ["CDNet"] __all__ = ["CDNet", "UNetEarlyFusion"]
class BaseChangeDetector(BaseModel): class BaseChangeDetector(BaseModel):
@ -663,3 +663,21 @@ class CDNet(BaseChangeDetector):
num_classes=num_classes, num_classes=num_classes,
use_mixed_loss=use_mixed_loss, use_mixed_loss=use_mixed_loss,
**params) **params)
class UNetEarlyFusion(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
in_channels=6,
use_dropout=False,
**params):
params.update({
'in_channels': in_channels,
'use_dropout': use_dropout
})
super(UNetEarlyFusion, self).__init__(
model_name='UNetEarlyFusion',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
**params)
Loading…
Cancel
Save