parent
49f72ae605
commit
0ddfbdcc1b
13 changed files with 1086 additions and 11 deletions
@ -1,3 +1,4 @@ |
||||
from .voc import VOCDetection |
||||
from .seg_dataset import SegDataset |
||||
from .cd_dataset import CDDataset |
||||
from .raster import Raster |
@ -0,0 +1,97 @@ |
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import os.path as osp |
||||
import copy |
||||
|
||||
from paddle.io import Dataset |
||||
from paddlers.utils import logging, get_num_workers, get_encoding, path_normalization, is_pic |
||||
|
||||
|
||||
class CDDataset(Dataset): |
||||
"""读取变化检测任务数据集,并对样本进行相应的处理(来自SegDataset,图像标签需要两个)。 |
||||
|
||||
Args: |
||||
data_dir (str): 数据集所在的目录路径。 |
||||
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。 |
||||
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。 |
||||
transforms (paddlers.transforms): 数据集中每个样本的预处理/增强算子。 |
||||
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。 |
||||
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 |
||||
""" |
||||
|
||||
def __init__(self, |
||||
data_dir, |
||||
file_list, |
||||
label_list=None, |
||||
transforms=None, |
||||
num_workers='auto', |
||||
shuffle=False): |
||||
super(CDDataset, self).__init__() |
||||
self.transforms = copy.deepcopy(transforms) |
||||
# TODO batch padding |
||||
self.batch_transforms = None |
||||
self.num_workers = get_num_workers(num_workers) |
||||
self.shuffle = shuffle |
||||
self.file_list = list() |
||||
self.labels = list() |
||||
|
||||
# TODO:非None时,让用户跳转数据集分析生成label_list |
||||
# 不要在此处分析label file |
||||
if label_list is not None: |
||||
with open(label_list, encoding=get_encoding(label_list)) as f: |
||||
for line in f: |
||||
item = line.strip() |
||||
self.labels.append(item) |
||||
with open(file_list, encoding=get_encoding(file_list)) as f: |
||||
for line in f: |
||||
items = line.strip().split() |
||||
if len(items) > 3: |
||||
raise Exception( |
||||
"A space is defined as the delimiter to separate the image and label path, " \ |
||||
"so the space cannot be in the image or label path, but the line[{}] of " \ |
||||
" file_list[{}] has a space in the image or label path.".format(line, file_list)) |
||||
items[0] = path_normalization(items[0]) |
||||
items[1] = path_normalization(items[1]) |
||||
items[2] = path_normalization(items[2]) |
||||
if not is_pic(items[0]) or not is_pic(items[1]) or not is_pic(items[2]): |
||||
continue |
||||
full_path_im_t1 = osp.join(data_dir, items[0]) |
||||
full_path_im_t2 = osp.join(data_dir, items[1]) |
||||
full_path_label = osp.join(data_dir, items[2]) |
||||
if not osp.exists(full_path_im_t1): |
||||
raise IOError('Image file {} does not exist!'.format( |
||||
full_path_im_t1)) |
||||
if not osp.exists(full_path_im_t2): |
||||
raise IOError('Image file {} does not exist!'.format( |
||||
full_path_im_t2)) |
||||
if not osp.exists(full_path_label): |
||||
raise IOError('Label file {} does not exist!'.format( |
||||
full_path_label)) |
||||
self.file_list.append({ |
||||
'image_t1': full_path_im_t1, |
||||
'image_t2': full_path_im_t2, |
||||
'mask': full_path_label |
||||
}) |
||||
self.num_samples = len(self.file_list) |
||||
logging.info("{} samples in file {}".format( |
||||
len(self.file_list), file_list)) |
||||
|
||||
def __getitem__(self, idx): |
||||
sample = copy.deepcopy(self.file_list[idx]) |
||||
outputs = self.transforms(sample) |
||||
return outputs |
||||
|
||||
def __len__(self): |
||||
return len(self.file_list) |
@ -0,0 +1 @@ |
||||
from .cdnet import CDNet |
@ -0,0 +1,75 @@ |
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import paddle |
||||
import paddle.nn as nn |
||||
|
||||
|
||||
class CDNet(nn.Layer): |
||||
def __init__(self, in_channels=6, num_classes=2): |
||||
super(CDNet, self).__init__() |
||||
self.conv1 = Conv7x7(in_channels, 64, norm=True, act=True) |
||||
self.pool1 = nn.MaxPool2D(2, 2, return_mask=True) |
||||
self.conv2 = Conv7x7(64, 64, norm=True, act=True) |
||||
self.pool2 = nn.MaxPool2D(2, 2, return_mask=True) |
||||
self.conv3 = Conv7x7(64, 64, norm=True, act=True) |
||||
self.pool3 = nn.MaxPool2D(2, 2, return_mask=True) |
||||
self.conv4 = Conv7x7(64, 64, norm=True, act=True) |
||||
self.pool4 = nn.MaxPool2D(2, 2, return_mask=True) |
||||
self.conv5 = Conv7x7(64, 64, norm=True, act=True) |
||||
self.upool4 = nn.MaxUnPool2D(2, 2) |
||||
self.conv6 = Conv7x7(64, 64, norm=True, act=True) |
||||
self.upool3 = nn.MaxUnPool2D(2, 2) |
||||
self.conv7 = Conv7x7(64, 64, norm=True, act=True) |
||||
self.upool2 = nn.MaxUnPool2D(2, 2) |
||||
self.conv8 = Conv7x7(64, 64, norm=True, act=True) |
||||
self.upool1 = nn.MaxUnPool2D(2, 2) |
||||
self.conv_out = Conv7x7(64, num_classes, norm=False, act=False) |
||||
|
||||
def forward(self, t1, t2): |
||||
x = paddle.concat([t1, t2], axis=1) |
||||
x, ind1 = self.pool1(self.conv1(x)) |
||||
x, ind2 = self.pool2(self.conv2(x)) |
||||
x, ind3 = self.pool3(self.conv3(x)) |
||||
x, ind4 = self.pool4(self.conv4(x)) |
||||
x = self.conv5(self.upool4(x, ind4)) |
||||
x = self.conv6(self.upool3(x, ind3)) |
||||
x = self.conv7(self.upool2(x, ind2)) |
||||
x = self.conv8(self.upool1(x, ind1)) |
||||
return [self.conv_out(x)] |
||||
|
||||
|
||||
class Conv7x7(nn.Layer): |
||||
def __init__(self, in_ch, out_ch, norm=False, act=False): |
||||
super(Conv7x7, self).__init__() |
||||
layers = [ |
||||
nn.Pad2D(3), |
||||
nn.Conv2D(in_ch, out_ch, 7, bias_attr=(False if norm else None)) |
||||
] |
||||
if norm: |
||||
layers.append(nn.BatchNorm2D(out_ch)) |
||||
if act: |
||||
layers.append(nn.ReLU()) |
||||
self.layers = nn.Sequential(*layers) |
||||
|
||||
def forward(self, x): |
||||
return self.layers(x) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
t1 = paddle.randn((1, 3, 512, 512), dtype="float32") |
||||
t2 = paddle.randn((1, 3, 512, 512), dtype="float32") |
||||
model = CDNet(6, 2) |
||||
pred = model(t1, t2)[0] |
||||
print(pred.shape) |
@ -0,0 +1,16 @@ |
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License" |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
from . import seg_env |
||||
from .sys_env import get_sys_env |
@ -0,0 +1,56 @@ |
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License" |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
""" |
||||
This module is used to store environmental parameters in PaddleSeg. |
||||
|
||||
SEG_HOME : Root directory for storing PaddleSeg related data. Default to ~/.paddleseg. |
||||
Users can change the default value through the SEG_HOME environment variable. |
||||
DATA_HOME : The directory to store the automatically downloaded dataset, e.g ADE20K. |
||||
PRETRAINED_MODEL_HOME : The directory to store the automatically downloaded pretrained model. |
||||
""" |
||||
|
||||
import os |
||||
|
||||
from paddleseg.utils import logger |
||||
|
||||
|
||||
def _get_user_home(): |
||||
return os.path.expanduser('~') |
||||
|
||||
|
||||
def _get_seg_home(): |
||||
if 'SEG_HOME' in os.environ: |
||||
home_path = os.environ['SEG_HOME'] |
||||
if os.path.exists(home_path): |
||||
if os.path.isdir(home_path): |
||||
return home_path |
||||
else: |
||||
logger.warning('SEG_HOME {} is a file!'.format(home_path)) |
||||
else: |
||||
return home_path |
||||
return os.path.join(_get_user_home(), '.paddleseg') |
||||
|
||||
|
||||
def _get_sub_home(directory): |
||||
home = os.path.join(_get_seg_home(), directory) |
||||
if not os.path.exists(home): |
||||
os.makedirs(home, exist_ok=True) |
||||
return home |
||||
|
||||
|
||||
USER_HOME = _get_user_home() |
||||
SEG_HOME = _get_seg_home() |
||||
DATA_HOME = _get_sub_home('dataset') |
||||
TMP_HOME = _get_sub_home('tmp') |
||||
PRETRAINED_MODEL_HOME = _get_sub_home('pretrained_model') |
@ -0,0 +1,124 @@ |
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import glob |
||||
import os |
||||
import platform |
||||
import subprocess |
||||
import sys |
||||
|
||||
import cv2 |
||||
import paddle |
||||
import paddleseg |
||||
|
||||
IS_WINDOWS = sys.platform == 'win32' |
||||
|
||||
|
||||
def _find_cuda_home(): |
||||
'''Finds the CUDA install path. It refers to the implementation of |
||||
pytorch <https://github.com/pytorch/pytorch/blob/master/torch/utils/cpp_extension.py>. |
||||
''' |
||||
# Guess #1 |
||||
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') |
||||
if cuda_home is None: |
||||
# Guess #2 |
||||
try: |
||||
which = 'where' if IS_WINDOWS else 'which' |
||||
nvcc = subprocess.check_output([which, |
||||
'nvcc']).decode().rstrip('\r\n') |
||||
cuda_home = os.path.dirname(os.path.dirname(nvcc)) |
||||
except Exception: |
||||
# Guess #3 |
||||
if IS_WINDOWS: |
||||
cuda_homes = glob.glob( |
||||
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*') |
||||
if len(cuda_homes) == 0: |
||||
cuda_home = '' |
||||
else: |
||||
cuda_home = cuda_homes[0] |
||||
else: |
||||
cuda_home = '/usr/local/cuda' |
||||
if not os.path.exists(cuda_home): |
||||
cuda_home = None |
||||
return cuda_home |
||||
|
||||
|
||||
def _get_nvcc_info(cuda_home): |
||||
if cuda_home is not None and os.path.isdir(cuda_home): |
||||
try: |
||||
nvcc = os.path.join(cuda_home, 'bin/nvcc') |
||||
nvcc = subprocess.check_output( |
||||
"{} -V".format(nvcc), shell=True).decode() |
||||
nvcc = nvcc.strip().split('\n')[-1] |
||||
except subprocess.SubprocessError: |
||||
nvcc = "Not Available" |
||||
else: |
||||
nvcc = "Not Available" |
||||
return nvcc |
||||
|
||||
|
||||
def _get_gpu_info(): |
||||
try: |
||||
gpu_info = subprocess.check_output(['nvidia-smi', |
||||
'-L']).decode().strip() |
||||
gpu_info = gpu_info.split('\n') |
||||
for i in range(len(gpu_info)): |
||||
gpu_info[i] = ' '.join(gpu_info[i].split(' ')[:4]) |
||||
except: |
||||
gpu_info = ' Can not get GPU information. Please make sure CUDA have been installed successfully.' |
||||
return gpu_info |
||||
|
||||
|
||||
def get_sys_env(): |
||||
"""collect environment information""" |
||||
env_info = {} |
||||
env_info['platform'] = platform.platform() |
||||
|
||||
env_info['Python'] = sys.version.replace('\n', '') |
||||
|
||||
# TODO is_compiled_with_cuda() has not been moved |
||||
compiled_with_cuda = paddle.is_compiled_with_cuda() |
||||
env_info['Paddle compiled with cuda'] = compiled_with_cuda |
||||
|
||||
if compiled_with_cuda: |
||||
cuda_home = _find_cuda_home() |
||||
env_info['NVCC'] = _get_nvcc_info(cuda_home) |
||||
# refer to https://github.com/PaddlePaddle/Paddle/blob/release/2.0-rc/paddle/fluid/platform/device_context.cc#L327 |
||||
v = paddle.get_cudnn_version() |
||||
v = str(v // 1000) + '.' + str(v % 1000 // 100) |
||||
env_info['cudnn'] = v |
||||
if 'gpu' in paddle.get_device(): |
||||
gpu_nums = paddle.distributed.ParallelEnv().nranks |
||||
else: |
||||
gpu_nums = 0 |
||||
env_info['GPUs used'] = gpu_nums |
||||
|
||||
env_info['CUDA_VISIBLE_DEVICES'] = os.environ.get( |
||||
'CUDA_VISIBLE_DEVICES') |
||||
if gpu_nums == 0: |
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '' |
||||
env_info['GPU'] = _get_gpu_info() |
||||
|
||||
try: |
||||
gcc = subprocess.check_output(['gcc', '--version']).decode() |
||||
gcc = gcc.strip().split('\n')[0] |
||||
env_info['GCC'] = gcc |
||||
except: |
||||
pass |
||||
|
||||
env_info['PaddleSeg'] = paddleseg.__version__ |
||||
env_info['PaddlePaddle'] = paddle.__version__ |
||||
env_info['OpenCV'] = cv2.__version__ |
||||
|
||||
return env_info |
@ -0,0 +1,671 @@ |
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
||||
# |
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
# you may not use this file except in compliance with the License. |
||||
# You may obtain a copy of the License at |
||||
# |
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
# |
||||
# Unless required by applicable law or agreed to in writing, software |
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
# See the License for the specific language governing permissions and |
||||
# limitations under the License. |
||||
|
||||
import math |
||||
import os.path as osp |
||||
import numpy as np |
||||
import cv2 |
||||
from collections import OrderedDict |
||||
import paddle |
||||
import paddle.nn.functional as F |
||||
from paddle.static import InputSpec |
||||
import paddlers.models.ppseg as paddleseg |
||||
import paddlers |
||||
from paddlers.transforms import arrange_transforms |
||||
from paddlers.utils import get_single_card_bs, DisablePrint |
||||
import paddlers.utils.logging as logging |
||||
from .base import BaseModel |
||||
from .utils import seg_metrics as metrics |
||||
from paddlers.utils.checkpoint import seg_pretrain_weights_dict |
||||
from paddlers.transforms import Decode, Resize |
||||
from paddlers.models.ppcd import CDNet |
||||
|
||||
__all__ = ["CDNet"] |
||||
|
||||
|
||||
class BaseChangeDetector(BaseModel): |
||||
def __init__(self, |
||||
model_name, |
||||
num_classes=2, |
||||
use_mixed_loss=False, |
||||
**params): |
||||
self.init_params = locals() |
||||
if 'with_net' in self.init_params: |
||||
del self.init_params['with_net'] |
||||
super(BaseChangeDetector, self).__init__('changedetector') |
||||
if model_name not in __all__: |
||||
raise Exception("ERROR: There's no model named {}.".format( |
||||
model_name)) |
||||
self.model_name = model_name |
||||
self.num_classes = num_classes |
||||
self.use_mixed_loss = use_mixed_loss |
||||
self.losses = None |
||||
self.labels = None |
||||
if params.get('with_net', True): |
||||
params.pop('with_net', None) |
||||
self.net = self.build_net(**params) |
||||
self.find_unused_parameters = True |
||||
|
||||
def build_net(self, **params): |
||||
# TODO: add other model |
||||
net = CDNet(num_classes=self.num_classes, **params) |
||||
return net |
||||
|
||||
def _fix_transforms_shape(self, image_shape): |
||||
if hasattr(self, 'test_transforms'): |
||||
if self.test_transforms is not None: |
||||
has_resize_op = False |
||||
resize_op_idx = -1 |
||||
normalize_op_idx = len(self.test_transforms.transforms) |
||||
for idx, op in enumerate(self.test_transforms.transforms): |
||||
name = op.__class__.__name__ |
||||
if name == 'Normalize': |
||||
normalize_op_idx = idx |
||||
if 'Resize' in name: |
||||
has_resize_op = True |
||||
resize_op_idx = idx |
||||
|
||||
if not has_resize_op: |
||||
self.test_transforms.transforms.insert( |
||||
normalize_op_idx, Resize(target_size=image_shape)) |
||||
else: |
||||
self.test_transforms.transforms[resize_op_idx] = Resize( |
||||
target_size=image_shape) |
||||
|
||||
def _get_test_inputs(self, image_shape): |
||||
if image_shape is not None: |
||||
if len(image_shape) == 2: |
||||
image_shape = [1, 3] + image_shape |
||||
self._fix_transforms_shape(image_shape[-2:]) |
||||
else: |
||||
image_shape = [None, 3, -1, -1] |
||||
self.fixed_input_shape = image_shape |
||||
input_spec = [ |
||||
InputSpec( |
||||
shape=image_shape, name='image', dtype='float32') |
||||
] |
||||
return input_spec |
||||
|
||||
def run(self, net, inputs, mode): |
||||
net_out = net(inputs[0], inputs[1]) |
||||
logit = net_out[0] |
||||
outputs = OrderedDict() |
||||
if mode == 'test': |
||||
origin_shape = inputs[2] |
||||
if self.status == 'Infer': |
||||
label_map_list, score_map_list = self._postprocess( |
||||
net_out, origin_shape, transforms=inputs[3]) |
||||
else: |
||||
logit_list = self._postprocess( |
||||
logit, origin_shape, transforms=inputs[3]) |
||||
label_map_list = [] |
||||
score_map_list = [] |
||||
for logit in logit_list: |
||||
logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC |
||||
label_map_list.append( |
||||
paddle.argmax( |
||||
logit, axis=-1, keepdim=False, dtype='int32') |
||||
.squeeze().numpy()) |
||||
score_map_list.append( |
||||
F.softmax( |
||||
logit, axis=-1).squeeze().numpy().astype( |
||||
'float32')) |
||||
outputs['label_map'] = label_map_list |
||||
outputs['score_map'] = score_map_list |
||||
|
||||
if mode == 'eval': |
||||
if self.status == 'Infer': |
||||
pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW |
||||
else: |
||||
pred = paddle.argmax( |
||||
logit, axis=1, keepdim=True, dtype='int32') |
||||
label = inputs[2] |
||||
origin_shape = [label.shape[-2:]] |
||||
pred = self._postprocess( |
||||
pred, origin_shape, transforms=inputs[3])[0] # NCHW |
||||
intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area( |
||||
pred, label, self.num_classes) |
||||
outputs['intersect_area'] = intersect_area |
||||
outputs['pred_area'] = pred_area |
||||
outputs['label_area'] = label_area |
||||
outputs['conf_mat'] = metrics.confusion_matrix(pred, label, |
||||
self.num_classes) |
||||
if mode == 'train': |
||||
loss_list = metrics.loss_computation( |
||||
logits_list=net_out, labels=inputs[2], losses=self.losses) |
||||
loss = sum(loss_list) |
||||
outputs['loss'] = loss |
||||
return outputs |
||||
|
||||
def default_loss(self): |
||||
if isinstance(self.use_mixed_loss, bool): |
||||
if self.use_mixed_loss: |
||||
losses = [ |
||||
paddleseg.models.CrossEntropyLoss(), |
||||
paddleseg.models.LovaszSoftmaxLoss() |
||||
] |
||||
coef = [.8, .2] |
||||
loss_type = [ |
||||
paddleseg.models.MixedLoss( |
||||
losses=losses, coef=coef), |
||||
] |
||||
else: |
||||
loss_type = [paddleseg.models.CrossEntropyLoss()] |
||||
else: |
||||
losses, coef = list(zip(*self.use_mixed_loss)) |
||||
if not set(losses).issubset( |
||||
['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']): |
||||
raise ValueError( |
||||
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported." |
||||
) |
||||
losses = [getattr(paddleseg.models, loss)() for loss in losses] |
||||
loss_type = [ |
||||
paddleseg.models.MixedLoss( |
||||
losses=losses, coef=list(coef)) |
||||
] |
||||
if self.model_name == 'FastSCNN': |
||||
loss_type *= 2 |
||||
loss_coef = [1.0, 0.4] |
||||
elif self.model_name == 'BiSeNetV2': |
||||
loss_type *= 5 |
||||
loss_coef = [1.0] * 5 |
||||
else: |
||||
loss_coef = [1.0] |
||||
losses = {'types': loss_type, 'coef': loss_coef} |
||||
return losses |
||||
|
||||
def default_optimizer(self, |
||||
parameters, |
||||
learning_rate, |
||||
num_epochs, |
||||
num_steps_each_epoch, |
||||
lr_decay_power=0.9): |
||||
decay_step = num_epochs * num_steps_each_epoch |
||||
lr_scheduler = paddle.optimizer.lr.PolynomialDecay( |
||||
learning_rate, decay_step, end_lr=0, power=lr_decay_power) |
||||
optimizer = paddle.optimizer.Momentum( |
||||
learning_rate=lr_scheduler, |
||||
parameters=parameters, |
||||
momentum=0.9, |
||||
weight_decay=4e-5) |
||||
return optimizer |
||||
|
||||
def train(self, |
||||
num_epochs, |
||||
train_dataset, |
||||
train_batch_size=2, |
||||
eval_dataset=None, |
||||
optimizer=None, |
||||
save_interval_epochs=1, |
||||
log_interval_steps=2, |
||||
save_dir='output', |
||||
pretrain_weights='CITYSCAPES', |
||||
learning_rate=0.01, |
||||
lr_decay_power=0.9, |
||||
early_stop=False, |
||||
early_stop_patience=5, |
||||
use_vdl=True, |
||||
resume_checkpoint=None): |
||||
""" |
||||
Train the model. |
||||
Args: |
||||
num_epochs(int): The number of epochs. |
||||
train_dataset(paddlers.dataset): Training dataset. |
||||
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2. |
||||
eval_dataset(paddlers.dataset, optional): |
||||
Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None. |
||||
optimizer(paddle.optimizer.Optimizer or None, optional): |
||||
Optimizer used in training. If None, a default optimizer is used. Defaults to None. |
||||
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. |
||||
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. |
||||
save_dir(str, optional): Directory to save the model. Defaults to 'output'. |
||||
pretrain_weights(str or None, optional): |
||||
None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'. |
||||
learning_rate(float, optional): Learning rate for training. Defaults to .025. |
||||
lr_decay_power(float, optional): Learning decay power. Defaults to .9. |
||||
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. |
||||
early_stop_patience(int, optional): Early stop patience. Defaults to 5. |
||||
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. |
||||
resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from. |
||||
If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and |
||||
`pretrain_weights` can be set simultaneously. Defaults to None. |
||||
|
||||
""" |
||||
if self.status == 'Infer': |
||||
logging.error( |
||||
"Exported inference model does not support training.", |
||||
exit=True) |
||||
if pretrain_weights is not None and resume_checkpoint is not None: |
||||
logging.error( |
||||
"pretrain_weights and resume_checkpoint cannot be set simultaneously.", |
||||
exit=True) |
||||
self.labels = train_dataset.labels |
||||
if self.losses is None: |
||||
self.losses = self.default_loss() |
||||
|
||||
if optimizer is None: |
||||
num_steps_each_epoch = train_dataset.num_samples // train_batch_size |
||||
self.optimizer = self.default_optimizer( |
||||
self.net.parameters(), learning_rate, num_epochs, |
||||
num_steps_each_epoch, lr_decay_power) |
||||
else: |
||||
self.optimizer = optimizer |
||||
|
||||
if pretrain_weights is not None and not osp.exists(pretrain_weights): |
||||
if pretrain_weights not in seg_pretrain_weights_dict[ |
||||
self.model_name]: |
||||
logging.warning( |
||||
"Path of pretrain_weights('{}') does not exist!".format( |
||||
pretrain_weights)) |
||||
logging.warning("Pretrain_weights is forcibly set to '{}'. " |
||||
"If don't want to use pretrain weights, " |
||||
"set pretrain_weights to be None.".format( |
||||
seg_pretrain_weights_dict[self.model_name][ |
||||
0])) |
||||
pretrain_weights = seg_pretrain_weights_dict[self.model_name][ |
||||
0] |
||||
elif pretrain_weights is not None and osp.exists(pretrain_weights): |
||||
if osp.splitext(pretrain_weights)[-1] != '.pdparams': |
||||
logging.error( |
||||
"Invalid pretrain weights. Please specify a '.pdparams' file.", |
||||
exit=True) |
||||
pretrained_dir = osp.join(save_dir, 'pretrain') |
||||
is_backbone_weights = pretrain_weights == 'IMAGENET' |
||||
self.net_initialize( |
||||
pretrain_weights=pretrain_weights, |
||||
save_dir=pretrained_dir, |
||||
resume_checkpoint=resume_checkpoint, |
||||
is_backbone_weights=is_backbone_weights) |
||||
|
||||
self.train_loop( |
||||
num_epochs=num_epochs, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=train_batch_size, |
||||
eval_dataset=eval_dataset, |
||||
save_interval_epochs=save_interval_epochs, |
||||
log_interval_steps=log_interval_steps, |
||||
save_dir=save_dir, |
||||
early_stop=early_stop, |
||||
early_stop_patience=early_stop_patience, |
||||
use_vdl=use_vdl) |
||||
|
||||
def quant_aware_train(self, |
||||
num_epochs, |
||||
train_dataset, |
||||
train_batch_size=2, |
||||
eval_dataset=None, |
||||
optimizer=None, |
||||
save_interval_epochs=1, |
||||
log_interval_steps=2, |
||||
save_dir='output', |
||||
learning_rate=0.0001, |
||||
lr_decay_power=0.9, |
||||
early_stop=False, |
||||
early_stop_patience=5, |
||||
use_vdl=True, |
||||
resume_checkpoint=None, |
||||
quant_config=None): |
||||
""" |
||||
Quantization-aware training. |
||||
Args: |
||||
num_epochs(int): The number of epochs. |
||||
train_dataset(paddlers.dataset): Training dataset. |
||||
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2. |
||||
eval_dataset(paddlers.dataset, optional): |
||||
Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None. |
||||
optimizer(paddle.optimizer.Optimizer or None, optional): |
||||
Optimizer used in training. If None, a default optimizer is used. Defaults to None. |
||||
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1. |
||||
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10. |
||||
save_dir(str, optional): Directory to save the model. Defaults to 'output'. |
||||
learning_rate(float, optional): Learning rate for training. Defaults to .025. |
||||
lr_decay_power(float, optional): Learning decay power. Defaults to .9. |
||||
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False. |
||||
early_stop_patience(int, optional): Early stop patience. Defaults to 5. |
||||
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True. |
||||
quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb |
||||
configuration will be used. Defaults to None. |
||||
resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training |
||||
from. If None, no training checkpoint will be resumed. Defaults to None. |
||||
|
||||
""" |
||||
self._prepare_qat(quant_config) |
||||
self.train( |
||||
num_epochs=num_epochs, |
||||
train_dataset=train_dataset, |
||||
train_batch_size=train_batch_size, |
||||
eval_dataset=eval_dataset, |
||||
optimizer=optimizer, |
||||
save_interval_epochs=save_interval_epochs, |
||||
log_interval_steps=log_interval_steps, |
||||
save_dir=save_dir, |
||||
pretrain_weights=None, |
||||
learning_rate=learning_rate, |
||||
lr_decay_power=lr_decay_power, |
||||
early_stop=early_stop, |
||||
early_stop_patience=early_stop_patience, |
||||
use_vdl=use_vdl, |
||||
resume_checkpoint=resume_checkpoint) |
||||
|
||||
def evaluate(self, eval_dataset, batch_size=1, return_details=False): |
||||
""" |
||||
Evaluate the model. |
||||
Args: |
||||
eval_dataset(paddlers.dataset): Evaluation dataset. |
||||
batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1. |
||||
return_details(bool, optional): Whether to return evaluation details. Defaults to False. |
||||
|
||||
Returns: |
||||
collections.OrderedDict with key-value pairs: |
||||
{"miou": `mean intersection over union`, |
||||
"category_iou": `category-wise mean intersection over union`, |
||||
"oacc": `overall accuracy`, |
||||
"category_acc": `category-wise accuracy`, |
||||
"kappa": ` kappa coefficient`, |
||||
"category_F1-score": `F1 score`}. |
||||
|
||||
""" |
||||
arrange_transforms( |
||||
model_type=self.model_type, |
||||
transforms=eval_dataset.transforms, |
||||
mode='eval') |
||||
|
||||
self.net.eval() |
||||
nranks = paddle.distributed.get_world_size() |
||||
local_rank = paddle.distributed.get_rank() |
||||
if nranks > 1: |
||||
# Initialize parallel environment if not done. |
||||
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized( |
||||
): |
||||
paddle.distributed.init_parallel_env() |
||||
|
||||
batch_size_each_card = get_single_card_bs(batch_size) |
||||
if batch_size_each_card > 1: |
||||
batch_size_each_card = 1 |
||||
batch_size = batch_size_each_card * paddlers.env_info['num'] |
||||
logging.warning( |
||||
"Segmenter only supports batch_size=1 for each gpu/cpu card " \ |
||||
"during evaluation, so batch_size " \ |
||||
"is forcibly set to {}.".format(batch_size)) |
||||
self.eval_data_loader = self.build_data_loader( |
||||
eval_dataset, batch_size=batch_size, mode='eval') |
||||
|
||||
intersect_area_all = 0 |
||||
pred_area_all = 0 |
||||
label_area_all = 0 |
||||
conf_mat_all = [] |
||||
logging.info( |
||||
"Start to evaluate(total_samples={}, total_steps={})...".format( |
||||
eval_dataset.num_samples, |
||||
math.ceil(eval_dataset.num_samples * 1.0 / batch_size))) |
||||
with paddle.no_grad(): |
||||
for step, data in enumerate(self.eval_data_loader): |
||||
data.append(eval_dataset.transforms.transforms) |
||||
outputs = self.run(self.net, data, 'eval') |
||||
pred_area = outputs['pred_area'] |
||||
label_area = outputs['label_area'] |
||||
intersect_area = outputs['intersect_area'] |
||||
conf_mat = outputs['conf_mat'] |
||||
|
||||
# Gather from all ranks |
||||
if nranks > 1: |
||||
intersect_area_list = [] |
||||
pred_area_list = [] |
||||
label_area_list = [] |
||||
conf_mat_list = [] |
||||
paddle.distributed.all_gather(intersect_area_list, |
||||
intersect_area) |
||||
paddle.distributed.all_gather(pred_area_list, pred_area) |
||||
paddle.distributed.all_gather(label_area_list, label_area) |
||||
paddle.distributed.all_gather(conf_mat_list, conf_mat) |
||||
|
||||
# Some image has been evaluated and should be eliminated in last iter |
||||
if (step + 1) * nranks > len(eval_dataset): |
||||
valid = len(eval_dataset) - step * nranks |
||||
intersect_area_list = intersect_area_list[:valid] |
||||
pred_area_list = pred_area_list[:valid] |
||||
label_area_list = label_area_list[:valid] |
||||
conf_mat_list = conf_mat_list[:valid] |
||||
|
||||
intersect_area_all += sum(intersect_area_list) |
||||
pred_area_all += sum(pred_area_list) |
||||
label_area_all += sum(label_area_list) |
||||
conf_mat_all.extend(conf_mat_list) |
||||
|
||||
else: |
||||
intersect_area_all = intersect_area_all + intersect_area |
||||
pred_area_all = pred_area_all + pred_area |
||||
label_area_all = label_area_all + label_area |
||||
conf_mat_all.append(conf_mat) |
||||
class_iou, miou = paddleseg.utils.metrics.mean_iou( |
||||
intersect_area_all, pred_area_all, label_area_all) |
||||
# TODO 确认是按oacc还是macc |
||||
class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all, |
||||
pred_area_all) |
||||
kappa = paddleseg.utils.metrics.kappa(intersect_area_all, |
||||
pred_area_all, label_area_all) |
||||
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all, |
||||
label_area_all) |
||||
eval_metrics = OrderedDict( |
||||
zip([ |
||||
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa', |
||||
'category_F1-score' |
||||
], [miou, class_iou, oacc, class_acc, kappa, category_f1score])) |
||||
|
||||
if return_details: |
||||
conf_mat = sum(conf_mat_all) |
||||
eval_details = {'confusion_matrix': conf_mat.tolist()} |
||||
return eval_metrics, eval_details |
||||
return eval_metrics |
||||
|
||||
def predict(self, img_file, transforms=None): |
||||
""" |
||||
Do inference. |
||||
Args: |
||||
Args: |
||||
img_file(List[np.ndarray or str], str or np.ndarray): |
||||
Image path or decoded image data in a BGR format, which also could constitute a list, |
||||
meaning all images to be predicted as a mini-batch. |
||||
transforms(paddlers.transforms.Compose or None, optional): |
||||
Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None. |
||||
|
||||
Returns: |
||||
If img_file is a string or np.array, the result is a dict with key-value pairs: |
||||
{"label map": `label map`, "score_map": `score map`}. |
||||
If img_file is a list, the result is a list composed of dicts with the corresponding fields: |
||||
label_map(np.ndarray): the predicted label map (HW) |
||||
score_map(np.ndarray): the prediction score map (HWC) |
||||
|
||||
""" |
||||
if transforms is None and not hasattr(self, 'test_transforms'): |
||||
raise Exception("transforms need to be defined, now is None.") |
||||
if transforms is None: |
||||
transforms = self.test_transforms |
||||
if isinstance(img_file, (str, np.ndarray)): |
||||
images = [img_file] |
||||
else: |
||||
images = img_file |
||||
batch_im, batch_origin_shape = self._preprocess(images, transforms, |
||||
self.model_type) |
||||
self.net.eval() |
||||
data = (batch_im, batch_origin_shape, transforms.transforms) |
||||
outputs = self.run(self.net, data, 'test') |
||||
label_map_list = outputs['label_map'] |
||||
score_map_list = outputs['score_map'] |
||||
if isinstance(img_file, list): |
||||
prediction = [{ |
||||
'label_map': l, |
||||
'score_map': s |
||||
} for l, s in zip(label_map_list, score_map_list)] |
||||
else: |
||||
prediction = { |
||||
'label_map': label_map_list[0], |
||||
'score_map': score_map_list[0] |
||||
} |
||||
return prediction |
||||
|
||||
def _preprocess(self, images, transforms, to_tensor=True): |
||||
arrange_transforms( |
||||
model_type=self.model_type, transforms=transforms, mode='test') |
||||
batch_im = list() |
||||
batch_ori_shape = list() |
||||
for im in images: |
||||
sample = {'image': im} |
||||
if isinstance(sample['image'], str): |
||||
sample = Decode(to_rgb=False)(sample) |
||||
ori_shape = sample['image'].shape[:2] |
||||
im = transforms(sample)[0] |
||||
batch_im.append(im) |
||||
batch_ori_shape.append(ori_shape) |
||||
if to_tensor: |
||||
batch_im = paddle.to_tensor(batch_im) |
||||
else: |
||||
batch_im = np.asarray(batch_im) |
||||
|
||||
return batch_im, batch_ori_shape |
||||
|
||||
@staticmethod |
||||
def get_transforms_shape_info(batch_ori_shape, transforms): |
||||
batch_restore_list = list() |
||||
for ori_shape in batch_ori_shape: |
||||
restore_list = list() |
||||
h, w = ori_shape[0], ori_shape[1] |
||||
for op in transforms: |
||||
if op.__class__.__name__ == 'Resize': |
||||
restore_list.append(('resize', (h, w))) |
||||
h, w = op.target_size |
||||
elif op.__class__.__name__ == 'ResizeByShort': |
||||
restore_list.append(('resize', (h, w))) |
||||
im_short_size = min(h, w) |
||||
im_long_size = max(h, w) |
||||
scale = float(op.short_size) / float(im_short_size) |
||||
if 0 < op.max_size < np.round(scale * im_long_size): |
||||
scale = float(op.max_size) / float(im_long_size) |
||||
h = int(round(h * scale)) |
||||
w = int(round(w * scale)) |
||||
elif op.__class__.__name__ == 'ResizeByLong': |
||||
restore_list.append(('resize', (h, w))) |
||||
im_long_size = max(h, w) |
||||
scale = float(op.long_size) / float(im_long_size) |
||||
h = int(round(h * scale)) |
||||
w = int(round(w * scale)) |
||||
elif op.__class__.__name__ == 'Padding': |
||||
if op.target_size: |
||||
target_h, target_w = op.target_size |
||||
else: |
||||
target_h = int( |
||||
(np.ceil(h / op.size_divisor) * op.size_divisor)) |
||||
target_w = int( |
||||
(np.ceil(w / op.size_divisor) * op.size_divisor)) |
||||
|
||||
if op.pad_mode == -1: |
||||
offsets = op.offsets |
||||
elif op.pad_mode == 0: |
||||
offsets = [0, 0] |
||||
elif op.pad_mode == 1: |
||||
offsets = [(target_h - h) // 2, (target_w - w) // 2] |
||||
else: |
||||
offsets = [target_h - h, target_w - w] |
||||
restore_list.append(('padding', (h, w), offsets)) |
||||
h, w = target_h, target_w |
||||
|
||||
batch_restore_list.append(restore_list) |
||||
return batch_restore_list |
||||
|
||||
def _postprocess(self, batch_pred, batch_origin_shape, transforms): |
||||
batch_restore_list = BaseSegmenter.get_transforms_shape_info( |
||||
batch_origin_shape, transforms) |
||||
if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer': |
||||
return self._infer_postprocess( |
||||
batch_label_map=batch_pred[0], |
||||
batch_score_map=batch_pred[1], |
||||
batch_restore_list=batch_restore_list) |
||||
results = [] |
||||
if batch_pred.dtype == paddle.float32: |
||||
mode = 'bilinear' |
||||
else: |
||||
mode = 'nearest' |
||||
for pred, restore_list in zip(batch_pred, batch_restore_list): |
||||
pred = paddle.unsqueeze(pred, axis=0) |
||||
for item in restore_list[::-1]: |
||||
h, w = item[1][0], item[1][1] |
||||
if item[0] == 'resize': |
||||
pred = F.interpolate( |
||||
pred, (h, w), mode=mode, data_format='NCHW') |
||||
elif item[0] == 'padding': |
||||
x, y = item[2] |
||||
pred = pred[:, :, y:y + h, x:x + w] |
||||
else: |
||||
pass |
||||
results.append(pred) |
||||
return results |
||||
|
||||
def _infer_postprocess(self, batch_label_map, batch_score_map, |
||||
batch_restore_list): |
||||
label_maps = [] |
||||
score_maps = [] |
||||
for label_map, score_map, restore_list in zip( |
||||
batch_label_map, batch_score_map, batch_restore_list): |
||||
if not isinstance(label_map, np.ndarray): |
||||
label_map = paddle.unsqueeze(label_map, axis=[0, 3]) |
||||
score_map = paddle.unsqueeze(score_map, axis=0) |
||||
for item in restore_list[::-1]: |
||||
h, w = item[1][0], item[1][1] |
||||
if item[0] == 'resize': |
||||
if isinstance(label_map, np.ndarray): |
||||
label_map = cv2.resize( |
||||
label_map, (w, h), interpolation=cv2.INTER_NEAREST) |
||||
score_map = cv2.resize( |
||||
score_map, (w, h), interpolation=cv2.INTER_LINEAR) |
||||
else: |
||||
label_map = F.interpolate( |
||||
label_map, (h, w), |
||||
mode='nearest', |
||||
data_format='NHWC') |
||||
score_map = F.interpolate( |
||||
score_map, (h, w), |
||||
mode='bilinear', |
||||
data_format='NHWC') |
||||
elif item[0] == 'padding': |
||||
x, y = item[2] |
||||
if isinstance(label_map, np.ndarray): |
||||
label_map = label_map[..., y:y + h, x:x + w] |
||||
score_map = score_map[..., y:y + h, x:x + w] |
||||
else: |
||||
label_map = label_map[:, :, y:y + h, x:x + w] |
||||
score_map = score_map[:, :, y:y + h, x:x + w] |
||||
else: |
||||
pass |
||||
label_map = label_map.squeeze() |
||||
score_map = score_map.squeeze() |
||||
if not isinstance(label_map, np.ndarray): |
||||
label_map = label_map.numpy() |
||||
score_map = score_map.numpy() |
||||
label_maps.append(label_map.squeeze()) |
||||
score_maps.append(score_map.squeeze()) |
||||
return label_maps, score_maps |
||||
|
||||
|
||||
class CDNet(BaseChangeDetector): |
||||
def __init__(self, |
||||
num_classes=2, |
||||
use_mixed_loss=False, |
||||
in_channels=6, |
||||
**params): |
||||
params.update({'in_channels': in_channels}) |
||||
super(CDNet, self).__init__( |
||||
model_name='UNet', |
||||
num_classes=num_classes, |
||||
use_mixed_loss=use_mixed_loss, |
||||
**params) |
Loading…
Reference in new issue