[Feature] Init add change detection (without test task)

own
geoyee 3 years ago
parent 49f72ae605
commit 0ddfbdcc1b
  1. 7
      .gitignore
  2. 1
      paddlers/datasets/__init__.py
  3. 97
      paddlers/datasets/cd_dataset.py
  4. 14
      paddlers/datasets/raster.py
  5. 1
      paddlers/models/ppcd/__init__.py
  6. 75
      paddlers/models/ppcd/cdnet.py
  7. 16
      paddlers/models/ppseg/utils/env/__init__.py
  8. 56
      paddlers/models/ppseg/utils/env/seg_env.py
  9. 124
      paddlers/models/ppseg/utils/env/sys_env.py
  10. 671
      paddlers/tasks/changedetector.py
  11. 7
      paddlers/transforms/__init__.py
  12. 26
      paddlers/transforms/operators.py
  13. 2
      requirements.txt

7
.gitignore vendored

@ -102,11 +102,12 @@ celerybeat.pid
*.sage.py *.sage.py
# Environments # Environments
.env # don't filter paddleseg's env
# .env
.venv .venv
env/ # env/
venv/ venv/
ENV/ # ENV/
env.bak/ env.bak/
venv.bak/ venv.bak/

@ -1,3 +1,4 @@
from .voc import VOCDetection from .voc import VOCDetection
from .seg_dataset import SegDataset from .seg_dataset import SegDataset
from .cd_dataset import CDDataset
from .raster import Raster from .raster import Raster

@ -0,0 +1,97 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import copy
from paddle.io import Dataset
from paddlers.utils import logging, get_num_workers, get_encoding, path_normalization, is_pic
class CDDataset(Dataset):
"""读取变化检测任务数据集,并对样本进行相应的处理(来自SegDataset,图像标签需要两个)。
Args:
data_dir (str): 数据集所在的目录路径
file_list (str): 描述数据集图片文件和对应标注文件的文件路径文本内每行路径为相对data_dir的相对路
label_list (str): 描述数据集包含的类别信息文件路径默认值为None
transforms (paddlers.transforms): 数据集中每个样本的预处理/增强算子
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数默认为'auto'
shuffle (bool): 是否需要对数据集中样本打乱顺序默认为False
"""
def __init__(self,
data_dir,
file_list,
label_list=None,
transforms=None,
num_workers='auto',
shuffle=False):
super(CDDataset, self).__init__()
self.transforms = copy.deepcopy(transforms)
# TODO batch padding
self.batch_transforms = None
self.num_workers = get_num_workers(num_workers)
self.shuffle = shuffle
self.file_list = list()
self.labels = list()
# TODO:非None时,让用户跳转数据集分析生成label_list
# 不要在此处分析label file
if label_list is not None:
with open(label_list, encoding=get_encoding(label_list)) as f:
for line in f:
item = line.strip()
self.labels.append(item)
with open(file_list, encoding=get_encoding(file_list)) as f:
for line in f:
items = line.strip().split()
if len(items) > 3:
raise Exception(
"A space is defined as the delimiter to separate the image and label path, " \
"so the space cannot be in the image or label path, but the line[{}] of " \
" file_list[{}] has a space in the image or label path.".format(line, file_list))
items[0] = path_normalization(items[0])
items[1] = path_normalization(items[1])
items[2] = path_normalization(items[2])
if not is_pic(items[0]) or not is_pic(items[1]) or not is_pic(items[2]):
continue
full_path_im_t1 = osp.join(data_dir, items[0])
full_path_im_t2 = osp.join(data_dir, items[1])
full_path_label = osp.join(data_dir, items[2])
if not osp.exists(full_path_im_t1):
raise IOError('Image file {} does not exist!'.format(
full_path_im_t1))
if not osp.exists(full_path_im_t2):
raise IOError('Image file {} does not exist!'.format(
full_path_im_t2))
if not osp.exists(full_path_label):
raise IOError('Label file {} does not exist!'.format(
full_path_label))
self.file_list.append({
'image_t1': full_path_im_t1,
'image_t2': full_path_im_t2,
'mask': full_path_label
})
self.num_samples = len(self.file_list)
logging.info("{} samples in file {}".format(
len(self.file_list), file_list))
def __getitem__(self, idx):
sample = copy.deepcopy(self.file_list[idx])
outputs = self.transforms(sample)
return outputs
def __len__(self):
return len(self.file_list)

@ -42,7 +42,7 @@ class Raster:
self.path = path self.path = path
self.__src_data = np.load(path) if path.split(".")[-1] == "npy" \ self.__src_data = np.load(path) if path.split(".")[-1] == "npy" \
else gdal.Open(path) else gdal.Open(path)
self.__getInfo() self._getInfo()
self.to_uint8 = to_uint8 self.to_uint8 = to_uint8
self.setBands(band_list) self.setBands(band_list)
else: else:
@ -78,16 +78,16 @@ class Raster:
np.ndarray: data's ndarray. np.ndarray: data's ndarray.
""" """
if start_loc is None: if start_loc is None:
return self.__getAarray() return self._getAarray()
else: else:
return self.__getBlock(start_loc, block_size) return self._getBlock(start_loc, block_size)
def __getInfo(self) -> None: def _getInfo(self) -> None:
self.bands = self.__src_data.RasterCount self.bands = self.__src_data.RasterCount
self.width = self.__src_data.RasterXSize self.width = self.__src_data.RasterXSize
self.height = self.__src_data.RasterYSize self.height = self.__src_data.RasterYSize
def __getAarray(self, window: Union[None, List[int], Tuple[int]]=None) -> np.ndarray: def _getAarray(self, window: Union[None, List[int], Tuple[int]]=None) -> np.ndarray:
if window is not None: if window is not None:
xoff, yoff, xsize, ysize = window xoff, yoff, xsize, ysize = window
if self.band_list is None: if self.band_list is None:
@ -114,7 +114,7 @@ class Raster:
ima = raster2uint8(ima) ima = raster2uint8(ima)
return ima return ima
def __getBlock(self, def _getBlock(self,
start_loc: Union[List[int], Tuple[int]], start_loc: Union[List[int], Tuple[int]],
block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray: block_size: Union[List[int], Tuple[int]]=[512, 512]) -> np.ndarray:
if len(start_loc) != 2 or len(block_size) != 2: if len(start_loc) != 2 or len(block_size) != 2:
@ -128,7 +128,7 @@ class Raster:
xsize = self.width - xoff xsize = self.width - xoff
if yoff + ysize > self.height: if yoff + ysize > self.height:
ysize = self.height - yoff ysize = self.height - yoff
ima = self.__getAarray([int(xoff), int(yoff), int(xsize), int(ysize)]) ima = self._getAarray([int(xoff), int(yoff), int(xsize), int(ysize)])
h, w = ima.shape[:2] if len(ima.shape) == 3 else ima.shape h, w = ima.shape[:2] if len(ima.shape) == 3 else ima.shape
if self.bands != 1: if self.bands != 1:
tmp = np.zeros((block_size[0], block_size[1], self.bands), dtype=ima.dtype) tmp = np.zeros((block_size[0], block_size[1], self.bands), dtype=ima.dtype)

@ -0,0 +1 @@
from .cdnet import CDNet

@ -0,0 +1,75 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
class CDNet(nn.Layer):
def __init__(self, in_channels=6, num_classes=2):
super(CDNet, self).__init__()
self.conv1 = Conv7x7(in_channels, 64, norm=True, act=True)
self.pool1 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv2 = Conv7x7(64, 64, norm=True, act=True)
self.pool2 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv3 = Conv7x7(64, 64, norm=True, act=True)
self.pool3 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv4 = Conv7x7(64, 64, norm=True, act=True)
self.pool4 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv5 = Conv7x7(64, 64, norm=True, act=True)
self.upool4 = nn.MaxUnPool2D(2, 2)
self.conv6 = Conv7x7(64, 64, norm=True, act=True)
self.upool3 = nn.MaxUnPool2D(2, 2)
self.conv7 = Conv7x7(64, 64, norm=True, act=True)
self.upool2 = nn.MaxUnPool2D(2, 2)
self.conv8 = Conv7x7(64, 64, norm=True, act=True)
self.upool1 = nn.MaxUnPool2D(2, 2)
self.conv_out = Conv7x7(64, num_classes, norm=False, act=False)
def forward(self, t1, t2):
x = paddle.concat([t1, t2], axis=1)
x, ind1 = self.pool1(self.conv1(x))
x, ind2 = self.pool2(self.conv2(x))
x, ind3 = self.pool3(self.conv3(x))
x, ind4 = self.pool4(self.conv4(x))
x = self.conv5(self.upool4(x, ind4))
x = self.conv6(self.upool3(x, ind3))
x = self.conv7(self.upool2(x, ind2))
x = self.conv8(self.upool1(x, ind1))
return [self.conv_out(x)]
class Conv7x7(nn.Layer):
def __init__(self, in_ch, out_ch, norm=False, act=False):
super(Conv7x7, self).__init__()
layers = [
nn.Pad2D(3),
nn.Conv2D(in_ch, out_ch, 7, bias_attr=(False if norm else None))
]
if norm:
layers.append(nn.BatchNorm2D(out_ch))
if act:
layers.append(nn.ReLU())
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
if __name__ == "__main__":
t1 = paddle.randn((1, 3, 512, 512), dtype="float32")
t2 = paddle.randn((1, 3, 512, 512), dtype="float32")
model = CDNet(6, 2)
pred = model(t1, t2)[0]
print(pred.shape)

@ -0,0 +1,16 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import seg_env
from .sys_env import get_sys_env

@ -0,0 +1,56 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module is used to store environmental parameters in PaddleSeg.
SEG_HOME : Root directory for storing PaddleSeg related data. Default to ~/.paddleseg.
Users can change the default value through the SEG_HOME environment variable.
DATA_HOME : The directory to store the automatically downloaded dataset, e.g ADE20K.
PRETRAINED_MODEL_HOME : The directory to store the automatically downloaded pretrained model.
"""
import os
from paddleseg.utils import logger
def _get_user_home():
return os.path.expanduser('~')
def _get_seg_home():
if 'SEG_HOME' in os.environ:
home_path = os.environ['SEG_HOME']
if os.path.exists(home_path):
if os.path.isdir(home_path):
return home_path
else:
logger.warning('SEG_HOME {} is a file!'.format(home_path))
else:
return home_path
return os.path.join(_get_user_home(), '.paddleseg')
def _get_sub_home(directory):
home = os.path.join(_get_seg_home(), directory)
if not os.path.exists(home):
os.makedirs(home, exist_ok=True)
return home
USER_HOME = _get_user_home()
SEG_HOME = _get_seg_home()
DATA_HOME = _get_sub_home('dataset')
TMP_HOME = _get_sub_home('tmp')
PRETRAINED_MODEL_HOME = _get_sub_home('pretrained_model')

@ -0,0 +1,124 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
import platform
import subprocess
import sys
import cv2
import paddle
import paddleseg
IS_WINDOWS = sys.platform == 'win32'
def _find_cuda_home():
'''Finds the CUDA install path. It refers to the implementation of
pytorch <https://github.com/pytorch/pytorch/blob/master/torch/utils/cpp_extension.py>.
'''
# Guess #1
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home is None:
# Guess #2
try:
which = 'where' if IS_WINDOWS else 'which'
nvcc = subprocess.check_output([which,
'nvcc']).decode().rstrip('\r\n')
cuda_home = os.path.dirname(os.path.dirname(nvcc))
except Exception:
# Guess #3
if IS_WINDOWS:
cuda_homes = glob.glob(
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
if len(cuda_homes) == 0:
cuda_home = ''
else:
cuda_home = cuda_homes[0]
else:
cuda_home = '/usr/local/cuda'
if not os.path.exists(cuda_home):
cuda_home = None
return cuda_home
def _get_nvcc_info(cuda_home):
if cuda_home is not None and os.path.isdir(cuda_home):
try:
nvcc = os.path.join(cuda_home, 'bin/nvcc')
nvcc = subprocess.check_output(
"{} -V".format(nvcc), shell=True).decode()
nvcc = nvcc.strip().split('\n')[-1]
except subprocess.SubprocessError:
nvcc = "Not Available"
else:
nvcc = "Not Available"
return nvcc
def _get_gpu_info():
try:
gpu_info = subprocess.check_output(['nvidia-smi',
'-L']).decode().strip()
gpu_info = gpu_info.split('\n')
for i in range(len(gpu_info)):
gpu_info[i] = ' '.join(gpu_info[i].split(' ')[:4])
except:
gpu_info = ' Can not get GPU information. Please make sure CUDA have been installed successfully.'
return gpu_info
def get_sys_env():
"""collect environment information"""
env_info = {}
env_info['platform'] = platform.platform()
env_info['Python'] = sys.version.replace('\n', '')
# TODO is_compiled_with_cuda() has not been moved
compiled_with_cuda = paddle.is_compiled_with_cuda()
env_info['Paddle compiled with cuda'] = compiled_with_cuda
if compiled_with_cuda:
cuda_home = _find_cuda_home()
env_info['NVCC'] = _get_nvcc_info(cuda_home)
# refer to https://github.com/PaddlePaddle/Paddle/blob/release/2.0-rc/paddle/fluid/platform/device_context.cc#L327
v = paddle.get_cudnn_version()
v = str(v // 1000) + '.' + str(v % 1000 // 100)
env_info['cudnn'] = v
if 'gpu' in paddle.get_device():
gpu_nums = paddle.distributed.ParallelEnv().nranks
else:
gpu_nums = 0
env_info['GPUs used'] = gpu_nums
env_info['CUDA_VISIBLE_DEVICES'] = os.environ.get(
'CUDA_VISIBLE_DEVICES')
if gpu_nums == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
env_info['GPU'] = _get_gpu_info()
try:
gcc = subprocess.check_output(['gcc', '--version']).decode()
gcc = gcc.strip().split('\n')[0]
env_info['GCC'] = gcc
except:
pass
env_info['PaddleSeg'] = paddleseg.__version__
env_info['PaddlePaddle'] = paddle.__version__
env_info['OpenCV'] = cv2.__version__
return env_info

@ -0,0 +1,671 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os.path as osp
import numpy as np
import cv2
from collections import OrderedDict
import paddle
import paddle.nn.functional as F
from paddle.static import InputSpec
import paddlers.models.ppseg as paddleseg
import paddlers
from paddlers.transforms import arrange_transforms
from paddlers.utils import get_single_card_bs, DisablePrint
import paddlers.utils.logging as logging
from .base import BaseModel
from .utils import seg_metrics as metrics
from paddlers.utils.checkpoint import seg_pretrain_weights_dict
from paddlers.transforms import Decode, Resize
from paddlers.models.ppcd import CDNet
__all__ = ["CDNet"]
class BaseChangeDetector(BaseModel):
def __init__(self,
model_name,
num_classes=2,
use_mixed_loss=False,
**params):
self.init_params = locals()
if 'with_net' in self.init_params:
del self.init_params['with_net']
super(BaseChangeDetector, self).__init__('changedetector')
if model_name not in __all__:
raise Exception("ERROR: There's no model named {}.".format(
model_name))
self.model_name = model_name
self.num_classes = num_classes
self.use_mixed_loss = use_mixed_loss
self.losses = None
self.labels = None
if params.get('with_net', True):
params.pop('with_net', None)
self.net = self.build_net(**params)
self.find_unused_parameters = True
def build_net(self, **params):
# TODO: add other model
net = CDNet(num_classes=self.num_classes, **params)
return net
def _fix_transforms_shape(self, image_shape):
if hasattr(self, 'test_transforms'):
if self.test_transforms is not None:
has_resize_op = False
resize_op_idx = -1
normalize_op_idx = len(self.test_transforms.transforms)
for idx, op in enumerate(self.test_transforms.transforms):
name = op.__class__.__name__
if name == 'Normalize':
normalize_op_idx = idx
if 'Resize' in name:
has_resize_op = True
resize_op_idx = idx
if not has_resize_op:
self.test_transforms.transforms.insert(
normalize_op_idx, Resize(target_size=image_shape))
else:
self.test_transforms.transforms[resize_op_idx] = Resize(
target_size=image_shape)
def _get_test_inputs(self, image_shape):
if image_shape is not None:
if len(image_shape) == 2:
image_shape = [1, 3] + image_shape
self._fix_transforms_shape(image_shape[-2:])
else:
image_shape = [None, 3, -1, -1]
self.fixed_input_shape = image_shape
input_spec = [
InputSpec(
shape=image_shape, name='image', dtype='float32')
]
return input_spec
def run(self, net, inputs, mode):
net_out = net(inputs[0], inputs[1])
logit = net_out[0]
outputs = OrderedDict()
if mode == 'test':
origin_shape = inputs[2]
if self.status == 'Infer':
label_map_list, score_map_list = self._postprocess(
net_out, origin_shape, transforms=inputs[3])
else:
logit_list = self._postprocess(
logit, origin_shape, transforms=inputs[3])
label_map_list = []
score_map_list = []
for logit in logit_list:
logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
label_map_list.append(
paddle.argmax(
logit, axis=-1, keepdim=False, dtype='int32')
.squeeze().numpy())
score_map_list.append(
F.softmax(
logit, axis=-1).squeeze().numpy().astype(
'float32'))
outputs['label_map'] = label_map_list
outputs['score_map'] = score_map_list
if mode == 'eval':
if self.status == 'Infer':
pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
else:
pred = paddle.argmax(
logit, axis=1, keepdim=True, dtype='int32')
label = inputs[2]
origin_shape = [label.shape[-2:]]
pred = self._postprocess(
pred, origin_shape, transforms=inputs[3])[0] # NCHW
intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area(
pred, label, self.num_classes)
outputs['intersect_area'] = intersect_area
outputs['pred_area'] = pred_area
outputs['label_area'] = label_area
outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
self.num_classes)
if mode == 'train':
loss_list = metrics.loss_computation(
logits_list=net_out, labels=inputs[2], losses=self.losses)
loss = sum(loss_list)
outputs['loss'] = loss
return outputs
def default_loss(self):
if isinstance(self.use_mixed_loss, bool):
if self.use_mixed_loss:
losses = [
paddleseg.models.CrossEntropyLoss(),
paddleseg.models.LovaszSoftmaxLoss()
]
coef = [.8, .2]
loss_type = [
paddleseg.models.MixedLoss(
losses=losses, coef=coef),
]
else:
loss_type = [paddleseg.models.CrossEntropyLoss()]
else:
losses, coef = list(zip(*self.use_mixed_loss))
if not set(losses).issubset(
['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
raise ValueError(
"Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
)
losses = [getattr(paddleseg.models, loss)() for loss in losses]
loss_type = [
paddleseg.models.MixedLoss(
losses=losses, coef=list(coef))
]
if self.model_name == 'FastSCNN':
loss_type *= 2
loss_coef = [1.0, 0.4]
elif self.model_name == 'BiSeNetV2':
loss_type *= 5
loss_coef = [1.0] * 5
else:
loss_coef = [1.0]
losses = {'types': loss_type, 'coef': loss_coef}
return losses
def default_optimizer(self,
parameters,
learning_rate,
num_epochs,
num_steps_each_epoch,
lr_decay_power=0.9):
decay_step = num_epochs * num_steps_each_epoch
lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate, decay_step, end_lr=0, power=lr_decay_power)
optimizer = paddle.optimizer.Momentum(
learning_rate=lr_scheduler,
parameters=parameters,
momentum=0.9,
weight_decay=4e-5)
return optimizer
def train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
pretrain_weights='CITYSCAPES',
learning_rate=0.01,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None):
"""
Train the model.
Args:
num_epochs(int): The number of epochs.
train_dataset(paddlers.dataset): Training dataset.
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
eval_dataset(paddlers.dataset, optional):
Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
optimizer(paddle.optimizer.Optimizer or None, optional):
Optimizer used in training. If None, a default optimizer is used. Defaults to None.
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
save_dir(str, optional): Directory to save the model. Defaults to 'output'.
pretrain_weights(str or None, optional):
None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'.
learning_rate(float, optional): Learning rate for training. Defaults to .025.
lr_decay_power(float, optional): Learning decay power. Defaults to .9.
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
early_stop_patience(int, optional): Early stop patience. Defaults to 5.
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
`pretrain_weights` can be set simultaneously. Defaults to None.
"""
if self.status == 'Infer':
logging.error(
"Exported inference model does not support training.",
exit=True)
if pretrain_weights is not None and resume_checkpoint is not None:
logging.error(
"pretrain_weights and resume_checkpoint cannot be set simultaneously.",
exit=True)
self.labels = train_dataset.labels
if self.losses is None:
self.losses = self.default_loss()
if optimizer is None:
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
self.optimizer = self.default_optimizer(
self.net.parameters(), learning_rate, num_epochs,
num_steps_each_epoch, lr_decay_power)
else:
self.optimizer = optimizer
if pretrain_weights is not None and not osp.exists(pretrain_weights):
if pretrain_weights not in seg_pretrain_weights_dict[
self.model_name]:
logging.warning(
"Path of pretrain_weights('{}') does not exist!".format(
pretrain_weights))
logging.warning("Pretrain_weights is forcibly set to '{}'. "
"If don't want to use pretrain weights, "
"set pretrain_weights to be None.".format(
seg_pretrain_weights_dict[self.model_name][
0]))
pretrain_weights = seg_pretrain_weights_dict[self.model_name][
0]
elif pretrain_weights is not None and osp.exists(pretrain_weights):
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
logging.error(
"Invalid pretrain weights. Please specify a '.pdparams' file.",
exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = pretrain_weights == 'IMAGENET'
self.net_initialize(
pretrain_weights=pretrain_weights,
save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint,
is_backbone_weights=is_backbone_weights)
self.train_loop(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl)
def quant_aware_train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
learning_rate=0.0001,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None,
quant_config=None):
"""
Quantization-aware training.
Args:
num_epochs(int): The number of epochs.
train_dataset(paddlers.dataset): Training dataset.
train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
eval_dataset(paddlers.dataset, optional):
Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
optimizer(paddle.optimizer.Optimizer or None, optional):
Optimizer used in training. If None, a default optimizer is used. Defaults to None.
save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
save_dir(str, optional): Directory to save the model. Defaults to 'output'.
learning_rate(float, optional): Learning rate for training. Defaults to .025.
lr_decay_power(float, optional): Learning decay power. Defaults to .9.
early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
early_stop_patience(int, optional): Early stop patience. Defaults to 5.
use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
configuration will be used. Defaults to None.
resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
from. If None, no training checkpoint will be resumed. Defaults to None.
"""
self._prepare_qat(quant_config)
self.train(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
optimizer=optimizer,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
pretrain_weights=None,
learning_rate=learning_rate,
lr_decay_power=lr_decay_power,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl,
resume_checkpoint=resume_checkpoint)
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
"""
Evaluate the model.
Args:
eval_dataset(paddlers.dataset): Evaluation dataset.
batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
return_details(bool, optional): Whether to return evaluation details. Defaults to False.
Returns:
collections.OrderedDict with key-value pairs:
{"miou": `mean intersection over union`,
"category_iou": `category-wise mean intersection over union`,
"oacc": `overall accuracy`,
"category_acc": `category-wise accuracy`,
"kappa": ` kappa coefficient`,
"category_F1-score": `F1 score`}.
"""
arrange_transforms(
model_type=self.model_type,
transforms=eval_dataset.transforms,
mode='eval')
self.net.eval()
nranks = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
if nranks > 1:
# Initialize parallel environment if not done.
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
):
paddle.distributed.init_parallel_env()
batch_size_each_card = get_single_card_bs(batch_size)
if batch_size_each_card > 1:
batch_size_each_card = 1
batch_size = batch_size_each_card * paddlers.env_info['num']
logging.warning(
"Segmenter only supports batch_size=1 for each gpu/cpu card " \
"during evaluation, so batch_size " \
"is forcibly set to {}.".format(batch_size))
self.eval_data_loader = self.build_data_loader(
eval_dataset, batch_size=batch_size, mode='eval')
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
conf_mat_all = []
logging.info(
"Start to evaluate(total_samples={}, total_steps={})...".format(
eval_dataset.num_samples,
math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
with paddle.no_grad():
for step, data in enumerate(self.eval_data_loader):
data.append(eval_dataset.transforms.transforms)
outputs = self.run(self.net, data, 'eval')
pred_area = outputs['pred_area']
label_area = outputs['label_area']
intersect_area = outputs['intersect_area']
conf_mat = outputs['conf_mat']
# Gather from all ranks
if nranks > 1:
intersect_area_list = []
pred_area_list = []
label_area_list = []
conf_mat_list = []
paddle.distributed.all_gather(intersect_area_list,
intersect_area)
paddle.distributed.all_gather(pred_area_list, pred_area)
paddle.distributed.all_gather(label_area_list, label_area)
paddle.distributed.all_gather(conf_mat_list, conf_mat)
# Some image has been evaluated and should be eliminated in last iter
if (step + 1) * nranks > len(eval_dataset):
valid = len(eval_dataset) - step * nranks
intersect_area_list = intersect_area_list[:valid]
pred_area_list = pred_area_list[:valid]
label_area_list = label_area_list[:valid]
conf_mat_list = conf_mat_list[:valid]
intersect_area_all += sum(intersect_area_list)
pred_area_all += sum(pred_area_list)
label_area_all += sum(label_area_list)
conf_mat_all.extend(conf_mat_list)
else:
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
conf_mat_all.append(conf_mat)
class_iou, miou = paddleseg.utils.metrics.mean_iou(
intersect_area_all, pred_area_all, label_area_all)
# TODO 确认是按oacc还是macc
class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all,
pred_area_all)
kappa = paddleseg.utils.metrics.kappa(intersect_area_all,
pred_area_all, label_area_all)
category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
label_area_all)
eval_metrics = OrderedDict(
zip([
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
'category_F1-score'
], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
if return_details:
conf_mat = sum(conf_mat_all)
eval_details = {'confusion_matrix': conf_mat.tolist()}
return eval_metrics, eval_details
return eval_metrics
def predict(self, img_file, transforms=None):
"""
Do inference.
Args:
Args:
img_file(List[np.ndarray or str], str or np.ndarray):
Image path or decoded image data in a BGR format, which also could constitute a list,
meaning all images to be predicted as a mini-batch.
transforms(paddlers.transforms.Compose or None, optional):
Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
Returns:
If img_file is a string or np.array, the result is a dict with key-value pairs:
{"label map": `label map`, "score_map": `score map`}.
If img_file is a list, the result is a list composed of dicts with the corresponding fields:
label_map(np.ndarray): the predicted label map (HW)
score_map(np.ndarray): the prediction score map (HWC)
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
if transforms is None:
transforms = self.test_transforms
if isinstance(img_file, (str, np.ndarray)):
images = [img_file]
else:
images = img_file
batch_im, batch_origin_shape = self._preprocess(images, transforms,
self.model_type)
self.net.eval()
data = (batch_im, batch_origin_shape, transforms.transforms)
outputs = self.run(self.net, data, 'test')
label_map_list = outputs['label_map']
score_map_list = outputs['score_map']
if isinstance(img_file, list):
prediction = [{
'label_map': l,
'score_map': s
} for l, s in zip(label_map_list, score_map_list)]
else:
prediction = {
'label_map': label_map_list[0],
'score_map': score_map_list[0]
}
return prediction
def _preprocess(self, images, transforms, to_tensor=True):
arrange_transforms(
model_type=self.model_type, transforms=transforms, mode='test')
batch_im = list()
batch_ori_shape = list()
for im in images:
sample = {'image': im}
if isinstance(sample['image'], str):
sample = Decode(to_rgb=False)(sample)
ori_shape = sample['image'].shape[:2]
im = transforms(sample)[0]
batch_im.append(im)
batch_ori_shape.append(ori_shape)
if to_tensor:
batch_im = paddle.to_tensor(batch_im)
else:
batch_im = np.asarray(batch_im)
return batch_im, batch_ori_shape
@staticmethod
def get_transforms_shape_info(batch_ori_shape, transforms):
batch_restore_list = list()
for ori_shape in batch_ori_shape:
restore_list = list()
h, w = ori_shape[0], ori_shape[1]
for op in transforms:
if op.__class__.__name__ == 'Resize':
restore_list.append(('resize', (h, w)))
h, w = op.target_size
elif op.__class__.__name__ == 'ResizeByShort':
restore_list.append(('resize', (h, w)))
im_short_size = min(h, w)
im_long_size = max(h, w)
scale = float(op.short_size) / float(im_short_size)
if 0 < op.max_size < np.round(scale * im_long_size):
scale = float(op.max_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'ResizeByLong':
restore_list.append(('resize', (h, w)))
im_long_size = max(h, w)
scale = float(op.long_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'Padding':
if op.target_size:
target_h, target_w = op.target_size
else:
target_h = int(
(np.ceil(h / op.size_divisor) * op.size_divisor))
target_w = int(
(np.ceil(w / op.size_divisor) * op.size_divisor))
if op.pad_mode == -1:
offsets = op.offsets
elif op.pad_mode == 0:
offsets = [0, 0]
elif op.pad_mode == 1:
offsets = [(target_h - h) // 2, (target_w - w) // 2]
else:
offsets = [target_h - h, target_w - w]
restore_list.append(('padding', (h, w), offsets))
h, w = target_h, target_w
batch_restore_list.append(restore_list)
return batch_restore_list
def _postprocess(self, batch_pred, batch_origin_shape, transforms):
batch_restore_list = BaseSegmenter.get_transforms_shape_info(
batch_origin_shape, transforms)
if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
return self._infer_postprocess(
batch_label_map=batch_pred[0],
batch_score_map=batch_pred[1],
batch_restore_list=batch_restore_list)
results = []
if batch_pred.dtype == paddle.float32:
mode = 'bilinear'
else:
mode = 'nearest'
for pred, restore_list in zip(batch_pred, batch_restore_list):
pred = paddle.unsqueeze(pred, axis=0)
for item in restore_list[::-1]:
h, w = item[1][0], item[1][1]
if item[0] == 'resize':
pred = F.interpolate(
pred, (h, w), mode=mode, data_format='NCHW')
elif item[0] == 'padding':
x, y = item[2]
pred = pred[:, :, y:y + h, x:x + w]
else:
pass
results.append(pred)
return results
def _infer_postprocess(self, batch_label_map, batch_score_map,
batch_restore_list):
label_maps = []
score_maps = []
for label_map, score_map, restore_list in zip(
batch_label_map, batch_score_map, batch_restore_list):
if not isinstance(label_map, np.ndarray):
label_map = paddle.unsqueeze(label_map, axis=[0, 3])
score_map = paddle.unsqueeze(score_map, axis=0)
for item in restore_list[::-1]:
h, w = item[1][0], item[1][1]
if item[0] == 'resize':
if isinstance(label_map, np.ndarray):
label_map = cv2.resize(
label_map, (w, h), interpolation=cv2.INTER_NEAREST)
score_map = cv2.resize(
score_map, (w, h), interpolation=cv2.INTER_LINEAR)
else:
label_map = F.interpolate(
label_map, (h, w),
mode='nearest',
data_format='NHWC')
score_map = F.interpolate(
score_map, (h, w),
mode='bilinear',
data_format='NHWC')
elif item[0] == 'padding':
x, y = item[2]
if isinstance(label_map, np.ndarray):
label_map = label_map[..., y:y + h, x:x + w]
score_map = score_map[..., y:y + h, x:x + w]
else:
label_map = label_map[:, :, y:y + h, x:x + w]
score_map = score_map[:, :, y:y + h, x:x + w]
else:
pass
label_map = label_map.squeeze()
score_map = score_map.squeeze()
if not isinstance(label_map, np.ndarray):
label_map = label_map.numpy()
score_map = score_map.numpy()
label_maps.append(label_map.squeeze())
score_maps.append(score_map.squeeze())
return label_maps, score_maps
class CDNet(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
in_channels=6,
**params):
params.update({'in_channels': in_channels})
super(CDNet, self).__init__(
model_name='UNet',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
**params)

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from operator import mod
from .operators import * from .operators import *
from .batch_operators import BatchRandomResize, BatchRandomResizeByShort, _BatchPadding from .batch_operators import BatchRandomResize, BatchRandomResizeByShort, _BatchPadding
from paddlers import transforms as T from paddlers import transforms as T
@ -25,6 +26,12 @@ def arrange_transforms(model_type, transforms, mode='train'):
else: else:
transforms.apply_im_only = False transforms.apply_im_only = False
arrange_transform = ArrangeSegmenter(mode) arrange_transform = ArrangeSegmenter(mode)
elif model_type == 'changedetctor':
if mode == 'eval':
transforms.apply_im_only = True
else:
transforms.apply_im_only = False
arrange_transform = ArrangeChangeDetector(mode)
elif model_type == 'classifier': elif model_type == 'classifier':
arrange_transform = ArrangeClassifier(mode) arrange_transform = ArrangeClassifier(mode)
elif model_type == 'detector': elif model_type == 'detector':

@ -1370,6 +1370,32 @@ class ArrangeSegmenter(Transform):
return image, return image,
class ArrangeChangeDetector(Transform):
def __init__(self, mode):
super(ArrangeChangeDetector, self).__init__()
if mode not in ['train', 'eval', 'test', 'quant']:
raise ValueError(
"mode should be defined as one of ['train', 'eval', 'test', 'quant']!"
)
self.mode = mode
def apply(self, sample):
if 'mask' in sample:
mask = sample['mask']
image_t1 = permute(sample['image_t1'], False)
image_t2 = permute(sample['image_t2'], False)
if self.mode == 'train':
mask = mask.astype('int64')
return image_t1, image_t2, mask
if self.mode == 'eval':
mask = np.asarray(Image.open(mask))
mask = mask[np.newaxis, :, :].astype('int64')
return image_t1, image_t2, mask
if self.mode == 'test':
return image_t1, image_t2,
class ArrangeClassifier(Transform): class ArrangeClassifier(Transform):
def __init__(self, mode): def __init__(self, mode):
super(ArrangeClassifier, self).__init__() super(ArrangeClassifier, self).__init__()

@ -14,4 +14,4 @@ motmetrics
matplotlib matplotlib
chardet chardet
openpyxl openpyxl
GDAL >= 3.2.2 GDAL >= 3.1.3
Loading…
Cancel
Save