net_initialize->initialize_net

own
Bobholamovic 2 years ago
parent c9457a0d99
commit 0334a262c5
  1. 2
      paddlers/tasks/base.py
  2. 10
      paddlers/tasks/change_detector.py
  3. 2
      paddlers/tasks/classifier.py
  4. 2
      paddlers/tasks/object_detector.py
  5. 2
      paddlers/tasks/restorer.py
  6. 14
      paddlers/tasks/segmenter.py

@ -86,7 +86,7 @@ class BaseModel(metaclass=ModelMeta):
self.quant_config = None self.quant_config = None
self.fixed_input_shape = None self.fixed_input_shape = None
def net_initialize(self, def initialize_net(self,
pretrain_weights=None, pretrain_weights=None,
save_dir='.', save_dir='.',
resume_checkpoint=None, resume_checkpoint=None,

@ -316,7 +316,7 @@ class BaseChangeDetector(BaseModel):
exit=True) exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain') pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = pretrain_weights == 'IMAGENET' is_backbone_weights = pretrain_weights == 'IMAGENET'
self.net_initialize( self.initialize_net(
pretrain_weights=pretrain_weights, pretrain_weights=pretrain_weights,
save_dir=pretrained_dir, save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint, resume_checkpoint=resume_checkpoint,
@ -607,13 +607,13 @@ class BaseChangeDetector(BaseModel):
invalid_value (int, optional): Value that marks invalid pixels in output invalid_value (int, optional): Value that marks invalid pixels in output
image. Defaults to 255. image. Defaults to 255.
merge_strategy (str, optional): Strategy to merge overlapping blocks. Choices merge_strategy (str, optional): Strategy to merge overlapping blocks. Choices
are {'keep_first', 'keep_last', 'vote'}. 'keep_first' and 'keep_last' are {'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last'
means keeping the values of the first and the last block in traversal means keeping the values of the first and the last block in traversal
order, respectively. 'vote' means applying a simple voting strategy when order, respectively. 'accum' means determining the class of an overlapping
there are conflicts in the overlapping pixels. Defaults to 'keep_last'. pixel according to accumulated probabilities. Defaults to 'keep_last'.
""" """
slider_predict(self, img_files, save_dir, block_size, overlap, slider_predict(self.predict, img_files, save_dir, block_size, overlap,
transforms, invalid_value, merge_strategy) transforms, invalid_value, merge_strategy)
def preprocess(self, images, transforms, to_tensor=True): def preprocess(self, images, transforms, to_tensor=True):

@ -288,7 +288,7 @@ class BaseClassifier(BaseModel):
exit=True) exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain') pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = False is_backbone_weights = False
self.net_initialize( self.initialize_net(
pretrain_weights=pretrain_weights, pretrain_weights=pretrain_weights,
save_dir=pretrained_dir, save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint, resume_checkpoint=resume_checkpoint,

@ -347,7 +347,7 @@ class BaseDetector(BaseModel):
"Invalid pretrained weights. Please specify a .pdparams file.", "Invalid pretrained weights. Please specify a .pdparams file.",
exit=True) exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain') pretrained_dir = osp.join(save_dir, 'pretrain')
self.net_initialize( self.initialize_net(
pretrain_weights=pretrain_weights, pretrain_weights=pretrain_weights,
save_dir=pretrained_dir, save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint, resume_checkpoint=resume_checkpoint,

@ -283,7 +283,7 @@ class BaseRestorer(BaseModel):
exit=True) exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain') pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = pretrain_weights == 'IMAGENET' is_backbone_weights = pretrain_weights == 'IMAGENET'
self.net_initialize( self.initialize_net(
pretrain_weights=pretrain_weights, pretrain_weights=pretrain_weights,
save_dir=pretrained_dir, save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint, resume_checkpoint=resume_checkpoint,

@ -308,7 +308,7 @@ class BaseSegmenter(BaseModel):
exit=True) exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain') pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = pretrain_weights == 'IMAGENET' is_backbone_weights = pretrain_weights == 'IMAGENET'
self.net_initialize( self.initialize_net(
pretrain_weights=pretrain_weights, pretrain_weights=pretrain_weights,
save_dir=pretrained_dir, save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint, resume_checkpoint=resume_checkpoint,
@ -579,15 +579,13 @@ class BaseSegmenter(BaseModel):
invalid_value (int, optional): Value that marks invalid pixels in output invalid_value (int, optional): Value that marks invalid pixels in output
image. Defaults to 255. image. Defaults to 255.
merge_strategy (str, optional): Strategy to merge overlapping blocks. Choices merge_strategy (str, optional): Strategy to merge overlapping blocks. Choices
are {'keep_first', 'keep_last', 'vote', 'accum'}. 'keep_first' and are {'keep_first', 'keep_last', 'accum'}. 'keep_first' and 'keep_last'
'keep_last' means keeping the values of the first and the last block in means keeping the values of the first and the last block in traversal
traversal order, respectively. 'vote' means applying a simple voting order, respectively. 'accum' means determining the class of an overlapping
strategy when there are conflicts in the overlapping pixels. 'accum' pixel according to accumulated probabilities. Defaults to 'keep_last'.
means determining the class of an overlapping pixel according to
accumulated probabilities. Defaults to 'keep_last'.
""" """
slider_predict(self, img_file, save_dir, block_size, overlap, slider_predict(self.predict, img_file, save_dir, block_size, overlap,
transforms, invalid_value, merge_strategy) transforms, invalid_value, merge_strategy)
def preprocess(self, images, transforms, to_tensor=True): def preprocess(self, images, transforms, to_tensor=True):

Loading…
Cancel
Save