|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
|
|
from .layers import make_norm, Conv3x3, CBAM
|
|
|
|
from .stanet import Backbone, Decoder
|
|
|
|
|
|
|
|
|
|
|
|
class DSAMNet(nn.Layer):
|
|
|
|
"""
|
|
|
|
The DSAMNet implementation based on PaddlePaddle.
|
|
|
|
|
|
|
|
The original article refers to
|
|
|
|
Q. Shi, et al., "A Deeply Supervised Attention Metric-Based Network and an
|
|
|
|
Open Aerial Image Dataset for Remote Sensing Change Detection"
|
|
|
|
(https://ieeexplore.ieee.org/document/9467555).
|
|
|
|
|
|
|
|
Note that this implementation differs from the original work in two aspects:
|
|
|
|
1. We do not use multiple dilation rates in layer 4 of the ResNet backbone.
|
|
|
|
2. A classification head is used in place of the original metric learning-based
|
|
|
|
head to stablize the training process.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_channels (int): Number of bands of the input images.
|
|
|
|
num_classes (int): Number of target classes.
|
|
|
|
ca_ratio (int, optional): Channel reduction ratio for the channel
|
|
|
|
attention module. Default: 8.
|
|
|
|
sa_kernel (int, optional): Size of the convolutional kernel used in the
|
|
|
|
spatial attention module. Default: 7.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_channels, num_classes, ca_ratio=8, sa_kernel=7):
|
|
|
|
super(DSAMNet, self).__init__()
|
|
|
|
|
|
|
|
WIDTH = 64
|
|
|
|
|
|
|
|
self.backbone = Backbone(
|
|
|
|
in_ch=in_channels, arch='resnet18', strides=(1, 1, 2, 2, 1))
|
|
|
|
self.decoder = Decoder(WIDTH)
|
|
|
|
|
|
|
|
self.cbam1 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
|
|
|
|
self.cbam2 = CBAM(64, ratio=ca_ratio, kernel_size=sa_kernel)
|
|
|
|
|
|
|
|
self.dsl2 = DSLayer(64, num_classes, 32, stride=2, output_padding=1)
|
|
|
|
self.dsl3 = DSLayer(128, num_classes, 32, stride=4, output_padding=3)
|
|
|
|
|
|
|
|
self.conv_out = nn.Sequential(
|
|
|
|
Conv3x3(
|
|
|
|
WIDTH, WIDTH, norm=True, act=True),
|
|
|
|
Conv3x3(WIDTH, num_classes))
|
|
|
|
|
|
|
|
self.init_weight()
|
|
|
|
|
|
|
|
def forward(self, t1, t2):
|
|
|
|
f1 = self.backbone(t1)
|
|
|
|
f2 = self.backbone(t2)
|
|
|
|
|
|
|
|
y1 = self.decoder(f1)
|
|
|
|
y2 = self.decoder(f2)
|
|
|
|
|
|
|
|
y1 = self.cbam1(y1)
|
|
|
|
y2 = self.cbam2(y2)
|
|
|
|
|
|
|
|
out = paddle.abs(y1 - y2)
|
|
|
|
out = F.interpolate(
|
|
|
|
out, size=paddle.shape(t1)[2:], mode='bilinear', align_corners=True)
|
|
|
|
pred = self.conv_out(out)
|
|
|
|
|
|
|
|
if not self.training:
|
|
|
|
return [pred]
|
|
|
|
else:
|
|
|
|
ds2 = self.dsl2(paddle.abs(f1[0] - f2[0]))
|
|
|
|
ds3 = self.dsl3(paddle.abs(f1[1] - f2[1]))
|
|
|
|
return [pred, ds2, ds3]
|
|
|
|
|
|
|
|
def init_weight(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class DSLayer(nn.Sequential):
|
|
|
|
def __init__(self, in_ch, out_ch, itm_ch, **convd_kwargs):
|
|
|
|
super(DSLayer, self).__init__(
|
|
|
|
nn.Conv2DTranspose(
|
|
|
|
in_ch, itm_ch, kernel_size=3, padding=1, **convd_kwargs),
|
|
|
|
make_norm(itm_ch),
|
|
|
|
nn.ReLU(),
|
|
|
|
nn.Dropout2D(p=0.2),
|
|
|
|
nn.Conv2DTranspose(
|
|
|
|
itm_ch, out_ch, kernel_size=3, padding=1))
|