You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1002 lines
33 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import math
from functools import partial
import paddle as pd
import paddle.nn as nn
import paddle.nn.functional as F
from .layers.pd_timm import DropPath, to_2tuple
def calc_product(*args):
if len(args) < 1:
raise ValueError
ret = args[0]
for arg in args[1:]:
ret *= arg
return ret
class ConvBlock(pd.nn.Layer):
def __init__(self,
input_size,
output_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
activation='prelu',
norm=None):
super(ConvBlock, self).__init__()
self.conv = pd.nn.Conv2D(
input_size,
output_size,
kernel_size,
stride,
padding,
bias_attr=bias)
self.norm = norm
if self.norm == 'batch':
self.bn = pd.nn.BatchNorm2D(output_size)
elif self.norm == 'instance':
self.bn = pd.nn.InstanceNorm2D(output_size)
self.activation = activation
if self.activation == 'relu':
self.act = pd.nn.ReLU(True)
elif self.activation == 'prelu':
self.act = pd.nn.PReLU()
elif self.activation == 'lrelu':
self.act = pd.nn.LeakyReLU(0.2, True)
elif self.activation == 'tanh':
self.act = pd.nn.Tanh()
elif self.activation == 'sigmoid':
self.act = pd.nn.Sigmoid()
def forward(self, x):
if self.norm is not None:
out = self.bn(self.conv(x))
else:
out = self.conv(x)
if self.activation != 'no':
return self.act(out)
else:
return out
class DeconvBlock(pd.nn.Layer):
def __init__(self,
input_size,
output_size,
kernel_size=4,
stride=2,
padding=1,
bias=True,
activation='prelu',
norm=None):
super(DeconvBlock, self).__init__()
self.deconv = pd.nn.Conv2DTranspose(
input_size,
output_size,
kernel_size,
stride,
padding,
bias_attr=bias)
self.norm = norm
if self.norm == 'batch':
self.bn = pd.nn.BatchNorm2D(output_size)
elif self.norm == 'instance':
self.bn = pd.nn.InstanceNorm2D(output_size)
self.activation = activation
if self.activation == 'relu':
self.act = pd.nn.ReLU(True)
elif self.activation == 'prelu':
self.act = pd.nn.PReLU()
elif self.activation == 'lrelu':
self.act = pd.nn.LeakyReLU(0.2, True)
elif self.activation == 'tanh':
self.act = pd.nn.Tanh()
elif self.activation == 'sigmoid':
self.act = pd.nn.Sigmoid()
def forward(self, x):
if self.norm is not None:
out = self.bn(self.deconv(x))
else:
out = self.deconv(x)
if self.activation is not None:
return self.act(out)
else:
return out
class ConvLayer(nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(ConvLayer, self).__init__()
self.conv2d = nn.Conv2D(in_channels, out_channels, kernel_size, stride,
padding)
def forward(self, x):
out = self.conv2d(x)
return out
class UpsampleConvLayer(pd.nn.Layer):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(UpsampleConvLayer, self).__init__()
self.conv2d = nn.Conv2DTranspose(
in_channels, out_channels, kernel_size, stride=stride, padding=1)
def forward(self, x):
out = self.conv2d(x)
return out
class ResidualBlock(pd.nn.Layer):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = ConvLayer(
channels, channels, kernel_size=3, stride=1, padding=1)
self.conv2 = ConvLayer(
channels, channels, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.conv1(x))
out = self.conv2(out) * 0.1
out = pd.add(out, residual)
return out
class ChangeFormer(nn.Layer):
"""
The ChangeFormer implementation based on PaddlePaddle.
The original article refers to
Wele Gedara Chaminda Bandara, Vishal M. Patel., "A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION"
(https://arxiv.org/pdf/2201.01293.pdf).
Args:
in_channels (int): Number of bands of the input images. Default: 3.
num_classes (int): Number of target classes. Default: 2.
decoder_softmax (bool, optional): Use softmax after decode or not. Default: False.
embed_dim (int, optional): Embedding dimension of each decoder head. Default: 256.
"""
def __init__(self,
in_channels=3,
num_classes=2,
decoder_softmax=False,
embed_dim=256):
super(ChangeFormer, self).__init__()
# Transformer Encoder
self.embed_dims = [64, 128, 320, 512]
self.depths = [3, 3, 4, 3]
self.embedding_dim = embed_dim
self.drop_rate = 0.1
self.attn_drop = 0.1
self.drop_path_rate = 0.1
self.Tenc_x2 = EncoderTransformer_v3(
img_size=256,
patch_size=7,
in_chans=in_channels,
num_classes=num_classes,
embed_dims=self.embed_dims,
num_heads=[1, 2, 4, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
qk_scale=None,
drop_rate=self.drop_rate,
attn_drop_rate=self.attn_drop,
drop_path_rate=self.drop_path_rate,
norm_layer=partial(
nn.LayerNorm, epsilon=1e-6),
depths=self.depths,
sr_ratios=[8, 4, 2, 1])
# Transformer Decoder
self.TDec_x2 = DecoderTransformer_v3(
input_transform='multiple_select',
in_index=[0, 1, 2, 3],
align_corners=False,
in_channels=self.embed_dims,
embedding_dim=self.embedding_dim,
output_nc=num_classes,
decoder_softmax=decoder_softmax,
feature_strides=[2, 4, 8, 16])
def forward(self, x1, x2):
[fx1, fx2] = [self.Tenc_x2(x1), self.Tenc_x2(x2)]
cp = self.TDec_x2(fx1, fx2)
return [cp]
# Transormer Ecoder with x2, x4, x8, x16 scales
class EncoderTransformer_v3(nn.Layer):
def __init__(self,
img_size=256,
patch_size=3,
in_chans=3,
num_classes=2,
embed_dims=[32, 64, 128, 256],
num_heads=[2, 2, 4, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
depths=[3, 3, 6, 18],
sr_ratios=[8, 4, 2, 1]):
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.embed_dims = embed_dims
# Patch embedding definitions
self.patch_embed1 = OverlapPatchEmbed(
img_size=img_size,
patch_size=7,
stride=4,
in_chans=in_chans,
embed_dim=embed_dims[0])
self.patch_embed2 = OverlapPatchEmbed(
img_size=img_size // 4,
patch_size=patch_size,
stride=2,
in_chans=embed_dims[0],
embed_dim=embed_dims[1])
self.patch_embed3 = OverlapPatchEmbed(
img_size=img_size // 8,
patch_size=patch_size,
stride=2,
in_chans=embed_dims[1],
embed_dim=embed_dims[2])
self.patch_embed4 = OverlapPatchEmbed(
img_size=img_size // 16,
patch_size=patch_size,
stride=2,
in_chans=embed_dims[2],
embed_dim=embed_dims[3])
# Stage-1 (x1/4 scale)
dpr = [x.item() for x in pd.linspace(0, drop_path_rate, sum(depths))]
cur = 0
self.block1 = nn.LayerList([
Block(
dim=embed_dims[0],
num_heads=num_heads[0],
mlp_ratio=mlp_ratios[0],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[0]) for i in range(depths[0])
])
self.norm1 = norm_layer(embed_dims[0])
# Stage-2 (x1/8 scale)
cur += depths[0]
self.block2 = nn.LayerList([
Block(
dim=embed_dims[1],
num_heads=num_heads[1],
mlp_ratio=mlp_ratios[1],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[1]) for i in range(depths[1])
])
self.norm2 = norm_layer(embed_dims[1])
# Stage-3 (x1/16 scale)
cur += depths[1]
self.block3 = nn.LayerList([
Block(
dim=embed_dims[2],
num_heads=num_heads[2],
mlp_ratio=mlp_ratios[2],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[2]) for i in range(depths[2])
])
self.norm3 = norm_layer(embed_dims[2])
# Stage-4 (x1/32 scale)
cur += depths[2]
self.block4 = nn.LayerList([
Block(
dim=embed_dims[3],
num_heads=num_heads[3],
mlp_ratio=mlp_ratios[3],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[3]) for i in range(depths[3])
])
self.norm4 = norm_layer(embed_dims[3])
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_op = nn.initializer.TruncatedNormal(std=.02)
trunc_normal_op(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
elif isinstance(m, nn.LayerNorm):
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
init_weight = nn.initializer.Constant(1.0)
init_weight(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
init_weight = nn.initializer.Normal(0, math.sqrt(2.0 / fan_out))
init_weight(m.weight)
if m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
def reset_drop_path(self, drop_path_rate):
dpr = [
x.item() for x in pd.linspace(0, drop_path_rate, sum(self.depths))
]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def forward_features(self, x):
B = x.shape[0]
outs = []
# Stage 1
x1, H1, W1 = self.patch_embed1(x)
for i, blk in enumerate(self.block1):
x1 = blk(x1, H1, W1)
x1 = self.norm1(x1)
x1 = x1.reshape(
[B, H1, W1, calc_product(*x1.shape[1:]) // (H1 * W1)]).transpose(
[0, 3, 1, 2])
outs.append(x1)
# Stage 2
x1, H1, W1 = self.patch_embed2(x1)
for i, blk in enumerate(self.block2):
x1 = blk(x1, H1, W1)
x1 = self.norm2(x1)
x1 = x1.reshape(
[B, H1, W1, calc_product(*x1.shape[1:]) // (H1 * W1)]).transpose(
[0, 3, 1, 2])
outs.append(x1)
# Stage 3
x1, H1, W1 = self.patch_embed3(x1)
for i, blk in enumerate(self.block3):
x1 = blk(x1, H1, W1)
x1 = self.norm3(x1)
x1 = x1.reshape(
[B, H1, W1, calc_product(*x1.shape[1:]) // (H1 * W1)]).transpose(
[0, 3, 1, 2])
outs.append(x1)
# Stage 4
x1, H1, W1 = self.patch_embed4(x1)
for i, blk in enumerate(self.block4):
x1 = blk(x1, H1, W1)
x1 = self.norm4(x1)
x1 = x1.reshape(
[B, H1, W1, calc_product(*x1.shape[1:]) // (H1 * W1)]).transpose(
[0, 3, 1, 2])
outs.append(x1)
return outs
def forward(self, x):
x = self.forward_features(x)
return x
class DecoderTransformer_v3(nn.Layer):
"""
Transformer Decoder
"""
def __init__(self,
input_transform='multiple_select',
in_index=[0, 1, 2, 3],
align_corners=True,
in_channels=[32, 64, 128, 256],
embedding_dim=64,
output_nc=2,
decoder_softmax=False,
feature_strides=[2, 4, 8, 16]):
super(DecoderTransformer_v3, self).__init__()
assert len(feature_strides) == len(in_channels)
assert min(feature_strides) == feature_strides[0]
# Settings
self.feature_strides = feature_strides
self.input_transform = input_transform
self.in_index = in_index
self.align_corners = align_corners
self.in_channels = in_channels
self.embedding_dim = embedding_dim
self.output_nc = output_nc
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels
# MLP decoder heads
self.linear_c4 = MLP(input_dim=c4_in_channels,
embed_dim=self.embedding_dim)
self.linear_c3 = MLP(input_dim=c3_in_channels,
embed_dim=self.embedding_dim)
self.linear_c2 = MLP(input_dim=c2_in_channels,
embed_dim=self.embedding_dim)
self.linear_c1 = MLP(input_dim=c1_in_channels,
embed_dim=self.embedding_dim)
# Convolutional Difference Layers
self.diff_c4 = conv_diff(
in_channels=2 * self.embedding_dim, out_channels=self.embedding_dim)
self.diff_c3 = conv_diff(
in_channels=2 * self.embedding_dim, out_channels=self.embedding_dim)
self.diff_c2 = conv_diff(
in_channels=2 * self.embedding_dim, out_channels=self.embedding_dim)
self.diff_c1 = conv_diff(
in_channels=2 * self.embedding_dim, out_channels=self.embedding_dim)
# Take outputs from middle of the encoder
self.make_pred_c4 = make_prediction(
in_channels=self.embedding_dim, out_channels=self.output_nc)
self.make_pred_c3 = make_prediction(
in_channels=self.embedding_dim, out_channels=self.output_nc)
self.make_pred_c2 = make_prediction(
in_channels=self.embedding_dim, out_channels=self.output_nc)
self.make_pred_c1 = make_prediction(
in_channels=self.embedding_dim, out_channels=self.output_nc)
# Final linear fusion layer
self.linear_fuse = nn.Sequential(
nn.Conv2D(
in_channels=self.embedding_dim * len(in_channels),
out_channels=self.embedding_dim,
kernel_size=1),
nn.BatchNorm2D(self.embedding_dim))
# Final predction head
self.convd2x = UpsampleConvLayer(
self.embedding_dim, self.embedding_dim, kernel_size=4, stride=2)
self.dense_2x = nn.Sequential(ResidualBlock(self.embedding_dim))
self.convd1x = UpsampleConvLayer(
self.embedding_dim, self.embedding_dim, kernel_size=4, stride=2)
self.dense_1x = nn.Sequential(ResidualBlock(self.embedding_dim))
self.change_probability = ConvLayer(
self.embedding_dim,
self.output_nc,
kernel_size=3,
stride=1,
padding=1)
# Final activation
self.output_softmax = decoder_softmax
self.active = nn.Sigmoid()
def _transform_inputs(self, inputs):
"""
Transform inputs for decoder.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
resize(
input=x,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
inputs = pd.concat(upsampled_inputs, dim=1)
elif self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index]
return inputs
def forward(self, inputs1, inputs2):
# Transforming encoder features (select layers)
x_1 = self._transform_inputs(inputs1) # len=4, 1/2, 1/4, 1/8, 1/16
x_2 = self._transform_inputs(inputs2) # len=4, 1/2, 1/4, 1/8, 1/16
# img1 and img2 features
c1_1, c2_1, c3_1, c4_1 = x_1
c1_2, c2_2, c3_2, c4_2 = x_2
############## MLP decoder on C1-C4 ###########
n, _, h, w = c4_1.shape
outputs = []
# Stage 4: x1/32 scale
_c4_1 = self.linear_c4(c4_1).transpose([0, 2, 1])
_c4_1 = _c4_1.reshape([
n, calc_product(*_c4_1.shape[1:]) //
(c4_1.shape[2] * c4_1.shape[3]), c4_1.shape[2], c4_1.shape[3]
])
_c4_2 = self.linear_c4(c4_2).transpose([0, 2, 1])
_c4_2 = _c4_2.reshape([
n, calc_product(*_c4_2.shape[1:]) //
(c4_2.shape[2] * c4_2.shape[3]), c4_2.shape[2], c4_2.shape[3]
])
_c4 = self.diff_c4(pd.concat((_c4_1, _c4_2), axis=1))
p_c4 = self.make_pred_c4(_c4)
outputs.append(p_c4)
_c4_up = resize(
_c4, size=c1_2.shape[2:], mode='bilinear', align_corners=False)
# Stage 3: x1/16 scale
_c3_1 = self.linear_c3(c3_1).transpose([0, 2, 1])
_c3_1 = _c3_1.reshape([
n, calc_product(*_c3_1.shape[1:]) //
(c3_1.shape[2] * c3_1.shape[3]), c3_1.shape[2], c3_1.shape[3]
])
_c3_2 = self.linear_c3(c3_2).transpose([0, 2, 1])
_c3_2 = _c3_2.reshape([
n, calc_product(*_c3_2.shape[1:]) //
(c3_2.shape[2] * c3_2.shape[3]), c3_2.shape[2], c3_2.shape[3]
])
_c3 = self.diff_c3(pd.concat((_c3_1, _c3_2), axis=1)) + \
F.interpolate(_c4, scale_factor=2, mode="bilinear")
p_c3 = self.make_pred_c3(_c3)
outputs.append(p_c3)
_c3_up = resize(
_c3, size=c1_2.shape[2:], mode='bilinear', align_corners=False)
# Stage 2: x1/8 scale
_c2_1 = self.linear_c2(c2_1).transpose([0, 2, 1])
_c2_1 = _c2_1.reshape([
n, calc_product(*_c2_1.shape[1:]) //
(c2_1.shape[2] * c2_1.shape[3]), c2_1.shape[2], c2_1.shape[3]
])
_c2_2 = self.linear_c2(c2_2).transpose([0, 2, 1])
_c2_2 = _c2_2.reshape([
n, calc_product(*_c2_2.shape[1:]) //
(c2_2.shape[2] * c2_2.shape[3]), c2_2.shape[2], c2_2.shape[3]
])
_c2 = self.diff_c2(pd.concat((_c2_1, _c2_2), axis=1)) + \
F.interpolate(_c3, scale_factor=2, mode="bilinear")
p_c2 = self.make_pred_c2(_c2)
outputs.append(p_c2)
_c2_up = resize(
_c2, size=c1_2.shape[2:], mode='bilinear', align_corners=False)
# Stage 1: x1/4 scale
_c1_1 = self.linear_c1(c1_1).transpose([0, 2, 1])
_c1_1 = _c1_1.reshape([
n, calc_product(*_c1_1.shape[1:]) //
(c1_1.shape[2] * c1_1.shape[3]), c1_1.shape[2], c1_1.shape[3]
])
_c1_2 = self.linear_c1(c1_2).transpose([0, 2, 1])
_c1_2 = _c1_2.reshape([
n, calc_product(*_c1_2.shape[1:]) //
(c1_2.shape[2] * c1_2.shape[3]), c1_2.shape[2], c1_2.shape[3]
])
_c1 = self.diff_c1(pd.concat((_c1_1, _c1_2), axis=1)) + \
F.interpolate(_c2, scale_factor=2, mode="bilinear")
p_c1 = self.make_pred_c1(_c1)
outputs.append(p_c1)
# Linear Fusion of difference image from all scales
_c = self.linear_fuse(pd.concat((_c4_up, _c3_up, _c2_up, _c1), axis=1))
# Upsampling x2 (x1/2 scale)
x = self.convd2x(_c)
# Residual block
x = self.dense_2x(x)
# Upsampling x2 (x1 scale)
x = self.convd1x(x)
# Residual block
x = self.dense_1x(x)
# Final prediction
cp = self.change_probability(x)
outputs.append(cp)
if self.output_softmax:
temp = outputs
outputs = []
for pred in temp:
outputs.append(self.active(pred))
return outputs[-1]
class OverlapPatchEmbed(nn.Layer):
"""
Image to Patch Embedding
"""
def __init__(self,
img_size=224,
patch_size=7,
stride=4,
in_chans=3,
embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.H, self.W = img_size[0] // patch_size[0], img_size[
1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2D(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2))
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_op = nn.initializer.TruncatedNormal(std=.02)
trunc_normal_op(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
elif isinstance(m, nn.LayerNorm):
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
init_weight = nn.initializer.Constant(1.0)
init_weight(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
init_weight = nn.initializer.Normal(0, math.sqrt(2.0 / fan_out))
init_weight(m.weight)
if m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose([0, 2, 1])
x = self.norm(x)
return x, H, W
def resize(input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
warning=True):
if warning:
if size is not None and align_corners:
input_h, input_w = tuple(int(x) for x in input.shape[2:])
output_h, output_w = tuple(int(x) for x in size)
if output_h > input_h or output_w > output_h:
if ((output_h > 1 and output_w > 1 and input_h > 1 and
input_w > 1) and (output_h - 1) % (input_h - 1) and
(output_w - 1) % (input_w - 1)):
warnings.warn(
f'When align_corners={align_corners}, '
'the output would more aligned if '
f'input size {(input_h, input_w)} is `x+1` and '
f'out size {(output_h, output_w)} is `nx+1`')
return F.interpolate(input, size, scale_factor, mode, align_corners)
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_op = nn.initializer.TruncatedNormal(std=.02)
trunc_normal_op(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
elif isinstance(m, nn.LayerNorm):
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
init_weight = nn.initializer.Constant(1.0)
init_weight(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
init_weight = nn.initializer.Normal(0, math.sqrt(2.0 / fan_out))
init_weight(m.weight)
if m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
def forward(self, x, H, W):
x = self.fc1(x)
x = self.dwconv(x, H, W)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Layer):
def __init__(self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
sr_ratio=1):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.q = nn.Linear(dim, dim, bias_attr=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2D(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_op = nn.initializer.TruncatedNormal(std=.02)
trunc_normal_op(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
elif isinstance(m, nn.LayerNorm):
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
init_weight = nn.initializer.Constant(1.0)
init_weight(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
init_weight = nn.initializer.Normal(0, math.sqrt(2.0 / fan_out))
init_weight(m.weight)
if m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
def forward(self, x, H, W):
B, N, C = x.shape
q = self.q(x).reshape([B, N, self.num_heads,
C // self.num_heads]).transpose([0, 2, 1, 3])
if self.sr_ratio > 1:
x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W])
x_ = self.sr(x_)
x_ = x_.reshape([B, C, calc_product(*x_.shape[2:])]).transpose(
[0, 2, 1])
x_ = self.norm(x_)
kv = self.kv(x_)
kv = kv.reshape([
B, calc_product(*kv.shape[1:]) // (2 * C), 2, self.num_heads,
C // self.num_heads
]).transpose([2, 0, 3, 1, 4])
else:
kv = self.kv(x)
kv = kv.reshape([
B, calc_product(*kv.shape[1:]) // (2 * C), 2, self.num_heads,
C // self.num_heads
]).transpose([2, 0, 3, 1, 4])
k, v = kv[0], kv[1]
attn = (q @k.transpose([0, 1, 3, 2])) * self.scale
attn = F.softmax(attn, axis=-1)
attn = self.attn_drop(attn)
x = (attn @v).transpose([0, 2, 1, 3]).reshape([B, N, C])
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Layer):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
sr_ratio=1):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
sr_ratio=sr_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity(
)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_op = nn.initializer.TruncatedNormal(std=.02)
trunc_normal_op(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
elif isinstance(m, nn.LayerNorm):
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
init_weight = nn.initializer.Constant(1.0)
init_weight(m.weight)
elif isinstance(m, nn.Conv2D):
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
fan_out //= m._groups
init_weight = nn.initializer.Normal(0, math.sqrt(2.0 / fan_out))
init_weight(m.weight)
if m.bias is not None:
init_bias = nn.initializer.Constant(0)
init_bias(m.bias)
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class DWConv(nn.Layer):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose([0, 2, 1]).reshape([B, C, H, W])
x = self.dwconv(x)
x = x.flatten(2).transpose([0, 2, 1])
return x
# Transformer Decoder
class MLP(nn.Layer):
"""
Linear Embedding
"""
def __init__(self, input_dim=2048, embed_dim=768):
super().__init__()
self.proj = nn.Linear(input_dim, embed_dim)
def forward(self, x):
x = x.flatten(2).transpose([0, 2, 1])
x = self.proj(x)
return x
# Difference Layer
def conv_diff(in_channels, out_channels):
return nn.Sequential(
nn.Conv2D(
in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(),
nn.BatchNorm2D(out_channels),
nn.Conv2D(
out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU())
# Intermediate prediction Layer
def make_prediction(in_channels, out_channels):
return nn.Sequential(
nn.Conv2D(
in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(),
nn.BatchNorm2D(out_channels),
nn.Conv2D(
out_channels, out_channels, kernel_size=3, padding=1))