You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
12 KiB
365 lines
12 KiB
3 years ago
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
3 years ago
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# The code is based on:
|
||
|
# https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/yolox_pafpn.py
|
||
|
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import ParamAttr
|
||
|
from paddle.regularizer import L2Decay
|
||
3 years ago
|
from paddlers.models.ppdet.core.workspace import register, serializable
|
||
3 years ago
|
from ..shape_spec import ShapeSpec
|
||
|
|
||
|
__all__ = ['CSPPAN']
|
||
|
|
||
|
|
||
|
class ConvBNLayer(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channel=96,
|
||
|
out_channel=96,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
groups=1,
|
||
|
act='leaky_relu'):
|
||
|
super(ConvBNLayer, self).__init__()
|
||
|
initializer = nn.initializer.KaimingUniform()
|
||
|
self.act = act
|
||
|
assert self.act in ['leaky_relu', "hard_swish"]
|
||
|
self.conv = nn.Conv2D(
|
||
|
in_channels=in_channel,
|
||
|
out_channels=out_channel,
|
||
|
kernel_size=kernel_size,
|
||
|
groups=groups,
|
||
|
padding=(kernel_size - 1) // 2,
|
||
|
stride=stride,
|
||
|
weight_attr=ParamAttr(initializer=initializer),
|
||
|
bias_attr=False)
|
||
|
self.bn = nn.BatchNorm2D(out_channel)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.bn(self.conv(x))
|
||
|
if self.act == "leaky_relu":
|
||
|
x = F.leaky_relu(x)
|
||
|
elif self.act == "hard_swish":
|
||
|
x = F.hardswish(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class DPModule(nn.Layer):
|
||
|
"""
|
||
|
Depth-wise and point-wise module.
|
||
|
Args:
|
||
|
in_channel (int): The input channels of this Module.
|
||
|
out_channel (int): The output channels of this Module.
|
||
|
kernel_size (int): The conv2d kernel size of this Module.
|
||
|
stride (int): The conv2d's stride of this Module.
|
||
|
act (str): The activation function of this Module,
|
||
|
Now support `leaky_relu` and `hard_swish`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channel=96,
|
||
|
out_channel=96,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
act='leaky_relu'):
|
||
|
super(DPModule, self).__init__()
|
||
|
initializer = nn.initializer.KaimingUniform()
|
||
|
self.act = act
|
||
|
self.dwconv = nn.Conv2D(
|
||
|
in_channels=in_channel,
|
||
|
out_channels=out_channel,
|
||
|
kernel_size=kernel_size,
|
||
|
groups=out_channel,
|
||
|
padding=(kernel_size - 1) // 2,
|
||
|
stride=stride,
|
||
|
weight_attr=ParamAttr(initializer=initializer),
|
||
|
bias_attr=False)
|
||
|
self.bn1 = nn.BatchNorm2D(out_channel)
|
||
|
self.pwconv = nn.Conv2D(
|
||
|
in_channels=out_channel,
|
||
|
out_channels=out_channel,
|
||
|
kernel_size=1,
|
||
|
groups=1,
|
||
|
padding=0,
|
||
|
weight_attr=ParamAttr(initializer=initializer),
|
||
|
bias_attr=False)
|
||
|
self.bn2 = nn.BatchNorm2D(out_channel)
|
||
|
|
||
|
def act_func(self, x):
|
||
|
if self.act == "leaky_relu":
|
||
|
x = F.leaky_relu(x)
|
||
|
elif self.act == "hard_swish":
|
||
|
x = F.hardswish(x)
|
||
|
return x
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.act_func(self.bn1(self.dwconv(x)))
|
||
|
x = self.act_func(self.bn2(self.pwconv(x)))
|
||
|
return x
|
||
|
|
||
|
|
||
|
class DarknetBottleneck(nn.Layer):
|
||
|
"""The basic bottleneck block used in Darknet.
|
||
|
|
||
|
Each Block consists of two ConvModules and the input is added to the
|
||
|
final output. Each ConvModule is composed of Conv, BN, and act.
|
||
|
The first convLayer has filter size of 1x1 and the second one has the
|
||
|
filter size of 3x3.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): The input channels of this Module.
|
||
|
out_channels (int): The output channels of this Module.
|
||
|
expansion (int): The kernel size of the convolution. Default: 0.5
|
||
|
add_identity (bool): Whether to add identity to the out.
|
||
|
Default: True
|
||
|
use_depthwise (bool): Whether to use depthwise separable convolution.
|
||
|
Default: False
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size=3,
|
||
|
expansion=0.5,
|
||
|
add_identity=True,
|
||
|
use_depthwise=False,
|
||
|
act="leaky_relu"):
|
||
|
super(DarknetBottleneck, self).__init__()
|
||
|
hidden_channels = int(out_channels * expansion)
|
||
|
conv_func = DPModule if use_depthwise else ConvBNLayer
|
||
|
self.conv1 = ConvBNLayer(
|
||
|
in_channel=in_channels,
|
||
|
out_channel=hidden_channels,
|
||
|
kernel_size=1,
|
||
|
act=act)
|
||
|
self.conv2 = conv_func(
|
||
|
in_channel=hidden_channels,
|
||
|
out_channel=out_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=1,
|
||
|
act=act)
|
||
|
self.add_identity = \
|
||
|
add_identity and in_channels == out_channels
|
||
|
|
||
|
def forward(self, x):
|
||
|
identity = x
|
||
|
out = self.conv1(x)
|
||
|
out = self.conv2(out)
|
||
|
|
||
|
if self.add_identity:
|
||
|
return out + identity
|
||
|
else:
|
||
|
return out
|
||
|
|
||
|
|
||
|
class CSPLayer(nn.Layer):
|
||
|
"""Cross Stage Partial Layer.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): The input channels of the CSP layer.
|
||
|
out_channels (int): The output channels of the CSP layer.
|
||
|
expand_ratio (float): Ratio to adjust the number of channels of the
|
||
|
hidden layer. Default: 0.5
|
||
|
num_blocks (int): Number of blocks. Default: 1
|
||
|
add_identity (bool): Whether to add identity in blocks.
|
||
|
Default: True
|
||
|
use_depthwise (bool): Whether to depthwise separable convolution in
|
||
|
blocks. Default: False
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size=3,
|
||
|
expand_ratio=0.5,
|
||
|
num_blocks=1,
|
||
|
add_identity=True,
|
||
|
use_depthwise=False,
|
||
|
act="leaky_relu"):
|
||
|
super().__init__()
|
||
|
mid_channels = int(out_channels * expand_ratio)
|
||
|
self.main_conv = ConvBNLayer(in_channels, mid_channels, 1, act=act)
|
||
|
self.short_conv = ConvBNLayer(in_channels, mid_channels, 1, act=act)
|
||
|
self.final_conv = ConvBNLayer(
|
||
|
2 * mid_channels, out_channels, 1, act=act)
|
||
|
|
||
|
self.blocks = nn.Sequential(*[
|
||
|
DarknetBottleneck(
|
||
|
mid_channels,
|
||
|
mid_channels,
|
||
|
kernel_size,
|
||
|
1.0,
|
||
|
add_identity,
|
||
|
use_depthwise,
|
||
|
act=act) for _ in range(num_blocks)
|
||
|
])
|
||
|
|
||
|
def forward(self, x):
|
||
|
x_short = self.short_conv(x)
|
||
|
|
||
|
x_main = self.main_conv(x)
|
||
|
x_main = self.blocks(x_main)
|
||
|
|
||
|
x_final = paddle.concat((x_main, x_short), axis=1)
|
||
|
return self.final_conv(x_final)
|
||
|
|
||
|
|
||
|
class Channel_T(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels=[116, 232, 464],
|
||
|
out_channels=96,
|
||
|
act="leaky_relu"):
|
||
|
super(Channel_T, self).__init__()
|
||
|
self.convs = nn.LayerList()
|
||
|
for i in range(len(in_channels)):
|
||
|
self.convs.append(
|
||
|
ConvBNLayer(
|
||
|
in_channels[i], out_channels, 1, act=act))
|
||
|
|
||
|
def forward(self, x):
|
||
|
outs = [self.convs[i](x[i]) for i in range(len(x))]
|
||
|
return outs
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class CSPPAN(nn.Layer):
|
||
|
"""Path Aggregation Network with CSP module.
|
||
|
|
||
|
Args:
|
||
|
in_channels (List[int]): Number of input channels per scale.
|
||
|
out_channels (int): Number of output channels (used at each scale)
|
||
|
kernel_size (int): The conv2d kernel size of this Module.
|
||
|
num_features (int): Number of output features of CSPPAN module.
|
||
|
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 1
|
||
|
use_depthwise (bool): Whether to depthwise separable convolution in
|
||
|
blocks. Default: True
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size=5,
|
||
|
num_features=3,
|
||
|
num_csp_blocks=1,
|
||
|
use_depthwise=True,
|
||
|
act='hard_swish',
|
||
|
spatial_scales=[0.125, 0.0625, 0.03125]):
|
||
|
super(CSPPAN, self).__init__()
|
||
|
self.conv_t = Channel_T(in_channels, out_channels, act=act)
|
||
|
in_channels = [out_channels] * len(spatial_scales)
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.spatial_scales = spatial_scales
|
||
|
self.num_features = num_features
|
||
|
conv_func = DPModule if use_depthwise else ConvBNLayer
|
||
|
|
||
|
if self.num_features == 4:
|
||
|
self.first_top_conv = conv_func(
|
||
|
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
|
||
|
self.second_top_conv = conv_func(
|
||
|
in_channels[0], in_channels[0], kernel_size, stride=2, act=act)
|
||
|
self.spatial_scales.append(self.spatial_scales[-1] / 2)
|
||
|
|
||
|
# build top-down blocks
|
||
|
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
||
|
self.top_down_blocks = nn.LayerList()
|
||
|
for idx in range(len(in_channels) - 1, 0, -1):
|
||
|
self.top_down_blocks.append(
|
||
|
CSPLayer(
|
||
|
in_channels[idx - 1] * 2,
|
||
|
in_channels[idx - 1],
|
||
|
kernel_size=kernel_size,
|
||
|
num_blocks=num_csp_blocks,
|
||
|
add_identity=False,
|
||
|
use_depthwise=use_depthwise,
|
||
|
act=act))
|
||
|
|
||
|
# build bottom-up blocks
|
||
|
self.downsamples = nn.LayerList()
|
||
|
self.bottom_up_blocks = nn.LayerList()
|
||
|
for idx in range(len(in_channels) - 1):
|
||
|
self.downsamples.append(
|
||
|
conv_func(
|
||
|
in_channels[idx],
|
||
|
in_channels[idx],
|
||
|
kernel_size=kernel_size,
|
||
|
stride=2,
|
||
|
act=act))
|
||
|
self.bottom_up_blocks.append(
|
||
|
CSPLayer(
|
||
|
in_channels[idx] * 2,
|
||
|
in_channels[idx + 1],
|
||
|
kernel_size=kernel_size,
|
||
|
num_blocks=num_csp_blocks,
|
||
|
add_identity=False,
|
||
|
use_depthwise=use_depthwise,
|
||
|
act=act))
|
||
|
|
||
|
def forward(self, inputs):
|
||
|
"""
|
||
|
Args:
|
||
|
inputs (tuple[Tensor]): input features.
|
||
|
|
||
|
Returns:
|
||
|
tuple[Tensor]: CSPPAN features.
|
||
|
"""
|
||
|
assert len(inputs) == len(self.in_channels)
|
||
|
inputs = self.conv_t(inputs)
|
||
|
|
||
|
# top-down path
|
||
|
inner_outs = [inputs[-1]]
|
||
|
for idx in range(len(self.in_channels) - 1, 0, -1):
|
||
|
feat_heigh = inner_outs[0]
|
||
|
feat_low = inputs[idx - 1]
|
||
|
|
||
|
upsample_feat = self.upsample(feat_heigh)
|
||
|
|
||
|
inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
|
||
|
paddle.concat([upsample_feat, feat_low], 1))
|
||
|
inner_outs.insert(0, inner_out)
|
||
|
|
||
|
# bottom-up path
|
||
|
outs = [inner_outs[0]]
|
||
|
for idx in range(len(self.in_channels) - 1):
|
||
|
feat_low = outs[-1]
|
||
|
feat_height = inner_outs[idx + 1]
|
||
|
downsample_feat = self.downsamples[idx](feat_low)
|
||
|
out = self.bottom_up_blocks[idx](paddle.concat(
|
||
|
[downsample_feat, feat_height], 1))
|
||
|
outs.append(out)
|
||
|
|
||
|
top_features = None
|
||
|
if self.num_features == 4:
|
||
|
top_features = self.first_top_conv(inputs[-1])
|
||
|
top_features = top_features + self.second_top_conv(outs[-1])
|
||
|
outs.append(top_features)
|
||
|
|
||
|
return tuple(outs)
|
||
|
|
||
|
@property
|
||
|
def out_shape(self):
|
||
|
return [
|
||
|
ShapeSpec(
|
||
|
channels=self.out_channels, stride=1. / s)
|
||
|
for s in self.spatial_scales
|
||
|
]
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, cfg, input_shape):
|
||
|
return {'in_channels': [i.channels for i in input_shape], }
|