|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import math
|
|
|
|
import paddle
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def bbox2delta(src_boxes, tgt_boxes, weights):
|
|
|
|
src_w = src_boxes[:, 2] - src_boxes[:, 0]
|
|
|
|
src_h = src_boxes[:, 3] - src_boxes[:, 1]
|
|
|
|
src_ctr_x = src_boxes[:, 0] + 0.5 * src_w
|
|
|
|
src_ctr_y = src_boxes[:, 1] + 0.5 * src_h
|
|
|
|
|
|
|
|
tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0]
|
|
|
|
tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1]
|
|
|
|
tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w
|
|
|
|
tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h
|
|
|
|
|
|
|
|
wx, wy, ww, wh = weights
|
|
|
|
dx = wx * (tgt_ctr_x - src_ctr_x) / src_w
|
|
|
|
dy = wy * (tgt_ctr_y - src_ctr_y) / src_h
|
|
|
|
dw = ww * paddle.log(tgt_w / src_w)
|
|
|
|
dh = wh * paddle.log(tgt_h / src_h)
|
|
|
|
|
|
|
|
deltas = paddle.stack((dx, dy, dw, dh), axis=1)
|
|
|
|
return deltas
|
|
|
|
|
|
|
|
|
|
|
|
def delta2bbox(deltas, boxes, weights):
|
|
|
|
clip_scale = math.log(1000.0 / 16)
|
|
|
|
|
|
|
|
widths = boxes[:, 2] - boxes[:, 0]
|
|
|
|
heights = boxes[:, 3] - boxes[:, 1]
|
|
|
|
ctr_x = boxes[:, 0] + 0.5 * widths
|
|
|
|
ctr_y = boxes[:, 1] + 0.5 * heights
|
|
|
|
|
|
|
|
wx, wy, ww, wh = weights
|
|
|
|
dx = deltas[:, 0::4] / wx
|
|
|
|
dy = deltas[:, 1::4] / wy
|
|
|
|
dw = deltas[:, 2::4] / ww
|
|
|
|
dh = deltas[:, 3::4] / wh
|
|
|
|
# Prevent sending too large values into paddle.exp()
|
|
|
|
dw = paddle.clip(dw, max=clip_scale)
|
|
|
|
dh = paddle.clip(dh, max=clip_scale)
|
|
|
|
|
|
|
|
pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
|
|
|
|
pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
|
|
|
|
pred_w = paddle.exp(dw) * widths.unsqueeze(1)
|
|
|
|
pred_h = paddle.exp(dh) * heights.unsqueeze(1)
|
|
|
|
|
|
|
|
pred_boxes = []
|
|
|
|
pred_boxes.append(pred_ctr_x - 0.5 * pred_w)
|
|
|
|
pred_boxes.append(pred_ctr_y - 0.5 * pred_h)
|
|
|
|
pred_boxes.append(pred_ctr_x + 0.5 * pred_w)
|
|
|
|
pred_boxes.append(pred_ctr_y + 0.5 * pred_h)
|
|
|
|
pred_boxes = paddle.stack(pred_boxes, axis=-1)
|
|
|
|
|
|
|
|
return pred_boxes
|
|
|
|
|
|
|
|
|
|
|
|
def expand_bbox(bboxes, scale):
|
|
|
|
w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5
|
|
|
|
h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5
|
|
|
|
x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5
|
|
|
|
y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5
|
|
|
|
|
|
|
|
w_half *= scale
|
|
|
|
h_half *= scale
|
|
|
|
|
|
|
|
bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32)
|
|
|
|
bboxes_exp[:, 0] = x_c - w_half
|
|
|
|
bboxes_exp[:, 2] = x_c + w_half
|
|
|
|
bboxes_exp[:, 1] = y_c - h_half
|
|
|
|
bboxes_exp[:, 3] = y_c + h_half
|
|
|
|
|
|
|
|
return bboxes_exp
|
|
|
|
|
|
|
|
|
|
|
|
def clip_bbox(boxes, im_shape):
|
|
|
|
h, w = im_shape[0], im_shape[1]
|
|
|
|
x1 = boxes[:, 0].clip(0, w)
|
|
|
|
y1 = boxes[:, 1].clip(0, h)
|
|
|
|
x2 = boxes[:, 2].clip(0, w)
|
|
|
|
y2 = boxes[:, 3].clip(0, h)
|
|
|
|
return paddle.stack([x1, y1, x2, y2], axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
def nonempty_bbox(boxes, min_size=0, return_mask=False):
|
|
|
|
w = boxes[:, 2] - boxes[:, 0]
|
|
|
|
h = boxes[:, 3] - boxes[:, 1]
|
|
|
|
mask = paddle.logical_and(h > min_size, w > min_size)
|
|
|
|
if return_mask:
|
|
|
|
return mask
|
|
|
|
keep = paddle.nonzero(mask).flatten()
|
|
|
|
return keep
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_area(boxes):
|
|
|
|
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_overlaps(boxes1, boxes2):
|
|
|
|
"""
|
|
|
|
Calculate overlaps between boxes1 and boxes2
|
|
|
|
|
|
|
|
Args:
|
|
|
|
boxes1 (Tensor): boxes with shape [M, 4]
|
|
|
|
boxes2 (Tensor): boxes with shape [N, 4]
|
|
|
|
|
|
|
|
Return:
|
|
|
|
overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N]
|
|
|
|
"""
|
|
|
|
M = boxes1.shape[0]
|
|
|
|
N = boxes2.shape[0]
|
|
|
|
if M * N == 0:
|
|
|
|
return paddle.zeros([M, N], dtype='float32')
|
|
|
|
area1 = bbox_area(boxes1)
|
|
|
|
area2 = bbox_area(boxes2)
|
|
|
|
|
|
|
|
xy_max = paddle.minimum(
|
|
|
|
paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:])
|
|
|
|
xy_min = paddle.maximum(
|
|
|
|
paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2])
|
|
|
|
width_height = xy_max - xy_min
|
|
|
|
width_height = width_height.clip(min=0)
|
|
|
|
inter = width_height.prod(axis=2)
|
|
|
|
|
|
|
|
overlaps = paddle.where(inter > 0, inter /
|
|
|
|
(paddle.unsqueeze(area1, 1) + area2 - inter),
|
|
|
|
paddle.zeros_like(inter))
|
|
|
|
return overlaps
|
|
|
|
|
|
|
|
|
|
|
|
def batch_bbox_overlaps(bboxes1,
|
|
|
|
bboxes2,
|
|
|
|
mode='iou',
|
|
|
|
is_aligned=False,
|
|
|
|
eps=1e-6):
|
|
|
|
"""Calculate overlap between two set of bboxes.
|
|
|
|
If ``is_aligned `` is ``False``, then calculate the overlaps between each
|
|
|
|
bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned
|
|
|
|
pair of bboxes1 and bboxes2.
|
|
|
|
Args:
|
|
|
|
bboxes1 (Tensor): shape (B, m, 4) in <x1, y1, x2, y2> format or empty.
|
|
|
|
bboxes2 (Tensor): shape (B, n, 4) in <x1, y1, x2, y2> format or empty.
|
|
|
|
B indicates the batch dim, in shape (B1, B2, ..., Bn).
|
|
|
|
If ``is_aligned `` is ``True``, then m and n must be equal.
|
|
|
|
mode (str): "iou" (intersection over union) or "iof" (intersection over
|
|
|
|
foreground).
|
|
|
|
is_aligned (bool, optional): If True, then m and n must be equal.
|
|
|
|
Default False.
|
|
|
|
eps (float, optional): A value added to the denominator for numerical
|
|
|
|
stability. Default 1e-6.
|
|
|
|
Returns:
|
|
|
|
Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,)
|
|
|
|
"""
|
|
|
|
assert mode in ['iou', 'iof', 'giou'], 'Unsupported mode {}'.format(mode)
|
|
|
|
# Either the boxes are empty or the length of boxes's last dimenstion is 4
|
|
|
|
assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0)
|
|
|
|
assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0)
|
|
|
|
|
|
|
|
# Batch dim must be the same
|
|
|
|
# Batch dim: (B1, B2, ... Bn)
|
|
|
|
assert bboxes1.shape[:-2] == bboxes2.shape[:-2]
|
|
|
|
batch_shape = bboxes1.shape[:-2]
|
|
|
|
|
|
|
|
rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0
|
|
|
|
cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0
|
|
|
|
if is_aligned:
|
|
|
|
assert rows == cols
|
|
|
|
|
|
|
|
if rows * cols == 0:
|
|
|
|
if is_aligned:
|
|
|
|
return paddle.full(batch_shape + (rows, ), 1)
|
|
|
|
else:
|
|
|
|
return paddle.full(batch_shape + (rows, cols), 1)
|
|
|
|
|
|
|
|
area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1])
|
|
|
|
area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1])
|
|
|
|
|
|
|
|
if is_aligned:
|
|
|
|
lt = paddle.maximum(bboxes1[:, :2], bboxes2[:, :2]) # [B, rows, 2]
|
|
|
|
rb = paddle.minimum(bboxes1[:, 2:], bboxes2[:, 2:]) # [B, rows, 2]
|
|
|
|
|
|
|
|
wh = (rb - lt).clip(min=0) # [B, rows, 2]
|
|
|
|
overlap = wh[:, 0] * wh[:, 1]
|
|
|
|
|
|
|
|
if mode in ['iou', 'giou']:
|
|
|
|
union = area1 + area2 - overlap
|
|
|
|
else:
|
|
|
|
union = area1
|
|
|
|
if mode == 'giou':
|
|
|
|
enclosed_lt = paddle.minimum(bboxes1[:, :2], bboxes2[:, :2])
|
|
|
|
enclosed_rb = paddle.maximum(bboxes1[:, 2:], bboxes2[:, 2:])
|
|
|
|
else:
|
|
|
|
lt = paddle.maximum(bboxes1[:, :2].reshape([rows, 1, 2]),
|
|
|
|
bboxes2[:, :2]) # [B, rows, cols, 2]
|
|
|
|
rb = paddle.minimum(bboxes1[:, 2:].reshape([rows, 1, 2]),
|
|
|
|
bboxes2[:, 2:]) # [B, rows, cols, 2]
|
|
|
|
|
|
|
|
wh = (rb - lt).clip(min=0) # [B, rows, cols, 2]
|
|
|
|
overlap = wh[:, :, 0] * wh[:, :, 1]
|
|
|
|
|
|
|
|
if mode in ['iou', 'giou']:
|
|
|
|
union = area1.reshape([rows,1]) \
|
|
|
|
+ area2.reshape([1,cols]) - overlap
|
|
|
|
else:
|
|
|
|
union = area1[:, None]
|
|
|
|
if mode == 'giou':
|
|
|
|
enclosed_lt = paddle.minimum(bboxes1[:, :2].reshape([rows, 1, 2]),
|
|
|
|
bboxes2[:, :2])
|
|
|
|
enclosed_rb = paddle.maximum(bboxes1[:, 2:].reshape([rows, 1, 2]),
|
|
|
|
bboxes2[:, 2:])
|
|
|
|
|
|
|
|
eps = paddle.to_tensor([eps])
|
|
|
|
union = paddle.maximum(union, eps)
|
|
|
|
ious = overlap / union
|
|
|
|
if mode in ['iou', 'iof']:
|
|
|
|
return ious
|
|
|
|
# calculate gious
|
|
|
|
enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0)
|
|
|
|
enclose_area = enclose_wh[:, :, 0] * enclose_wh[:, :, 1]
|
|
|
|
enclose_area = paddle.maximum(enclose_area, eps)
|
|
|
|
gious = ious - (enclose_area - union) / enclose_area
|
|
|
|
return 1 - gious
|
|
|
|
|
|
|
|
|
|
|
|
def xywh2xyxy(box):
|
|
|
|
x, y, w, h = box
|
|
|
|
x1 = x - w * 0.5
|
|
|
|
y1 = y - h * 0.5
|
|
|
|
x2 = x + w * 0.5
|
|
|
|
y2 = y + h * 0.5
|
|
|
|
return [x1, y1, x2, y2]
|
|
|
|
|
|
|
|
|
|
|
|
def make_grid(h, w, dtype):
|
|
|
|
yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)])
|
|
|
|
return paddle.stack((xv, yv), 2).cast(dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
def decode_yolo(box, anchor, downsample_ratio):
|
|
|
|
"""decode yolo box
|
|
|
|
|
|
|
|
Args:
|
|
|
|
box (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
|
|
|
|
anchor (list): anchor with the shape [na, 2]
|
|
|
|
downsample_ratio (int): downsample ratio, default 32
|
|
|
|
scale (float): scale, default 1.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1]
|
|
|
|
"""
|
|
|
|
x, y, w, h = box
|
|
|
|
na, grid_h, grid_w = x.shape[1:4]
|
|
|
|
grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2))
|
|
|
|
x1 = (x + grid[:, :, :, :, 0:1]) / grid_w
|
|
|
|
y1 = (y + grid[:, :, :, :, 1:2]) / grid_h
|
|
|
|
|
|
|
|
anchor = paddle.to_tensor(anchor)
|
|
|
|
anchor = paddle.cast(anchor, x.dtype)
|
|
|
|
anchor = anchor.reshape((1, na, 1, 1, 2))
|
|
|
|
w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w)
|
|
|
|
h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h)
|
|
|
|
|
|
|
|
return [x1, y1, w1, h1]
|
|
|
|
|
|
|
|
|
|
|
|
def iou_similarity(box1, box2, eps=1e-9):
|
|
|
|
"""Calculate iou of box1 and box2
|
|
|
|
|
|
|
|
Args:
|
|
|
|
box1 (Tensor): box with the shape [N, M1, 4]
|
|
|
|
box2 (Tensor): box with the shape [N, M2, 4]
|
|
|
|
|
|
|
|
Return:
|
|
|
|
iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2]
|
|
|
|
"""
|
|
|
|
box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4]
|
|
|
|
box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4]
|
|
|
|
px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4]
|
|
|
|
gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4]
|
|
|
|
x1y1 = paddle.maximum(px1y1, gx1y1)
|
|
|
|
x2y2 = paddle.minimum(px2y2, gx2y2)
|
|
|
|
overlap = (x2y2 - x1y1).clip(0).prod(-1)
|
|
|
|
area1 = (px2y2 - px1y1).clip(0).prod(-1)
|
|
|
|
area2 = (gx2y2 - gx1y1).clip(0).prod(-1)
|
|
|
|
union = area1 + area2 - overlap + eps
|
|
|
|
return overlap / union
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9):
|
|
|
|
"""calculate the iou of box1 and box2
|
|
|
|
|
|
|
|
Args:
|
|
|
|
box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
|
|
|
|
box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1]
|
|
|
|
giou (bool): whether use giou or not, default False
|
|
|
|
diou (bool): whether use diou or not, default False
|
|
|
|
ciou (bool): whether use ciou or not, default False
|
|
|
|
eps (float): epsilon to avoid divide by zero
|
|
|
|
|
|
|
|
Return:
|
|
|
|
iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1]
|
|
|
|
"""
|
|
|
|
px1, py1, px2, py2 = box1
|
|
|
|
gx1, gy1, gx2, gy2 = box2
|
|
|
|
x1 = paddle.maximum(px1, gx1)
|
|
|
|
y1 = paddle.maximum(py1, gy1)
|
|
|
|
x2 = paddle.minimum(px2, gx2)
|
|
|
|
y2 = paddle.minimum(py2, gy2)
|
|
|
|
|
|
|
|
overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0))
|
|
|
|
|
|
|
|
area1 = (px2 - px1) * (py2 - py1)
|
|
|
|
area1 = area1.clip(0)
|
|
|
|
|
|
|
|
area2 = (gx2 - gx1) * (gy2 - gy1)
|
|
|
|
area2 = area2.clip(0)
|
|
|
|
|
|
|
|
union = area1 + area2 - overlap + eps
|
|
|
|
iou = overlap / union
|
|
|
|
|
|
|
|
if giou or ciou or diou:
|
|
|
|
# convex w, h
|
|
|
|
cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1)
|
|
|
|
ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1)
|
|
|
|
if giou:
|
|
|
|
c_area = cw * ch + eps
|
|
|
|
return iou - (c_area - union) / c_area
|
|
|
|
else:
|
|
|
|
# convex diagonal squared
|
|
|
|
c2 = cw**2 + ch**2 + eps
|
|
|
|
# center distance
|
|
|
|
rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4
|
|
|
|
if diou:
|
|
|
|
return iou - rho2 / c2
|
|
|
|
else:
|
|
|
|
w1, h1 = px2 - px1, py2 - py1 + eps
|
|
|
|
w2, h2 = gx2 - gx1, gy2 - gy1 + eps
|
|
|
|
delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2)
|
|
|
|
v = (4 / math.pi**2) * paddle.pow(delta, 2)
|
|
|
|
alpha = v / (1 + eps - iou + v)
|
|
|
|
alpha.stop_gradient = True
|
|
|
|
return iou - (rho2 / c2 + v * alpha)
|
|
|
|
else:
|
|
|
|
return iou
|
|
|
|
|
|
|
|
|
|
|
|
def rect2rbox(bboxes):
|
|
|
|
"""
|
|
|
|
:param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
|
|
|
|
:return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
|
|
|
|
"""
|
|
|
|
bboxes = bboxes.reshape(-1, 4)
|
|
|
|
num_boxes = bboxes.shape[0]
|
|
|
|
|
|
|
|
x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
|
|
|
|
y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
|
|
|
|
edges1 = np.abs(bboxes[:, 2] - bboxes[:, 0])
|
|
|
|
edges2 = np.abs(bboxes[:, 3] - bboxes[:, 1])
|
|
|
|
angles = np.zeros([num_boxes], dtype=bboxes.dtype)
|
|
|
|
|
|
|
|
inds = edges1 < edges2
|
|
|
|
|
|
|
|
rboxes = np.stack((x_ctr, y_ctr, edges1, edges2, angles), axis=1)
|
|
|
|
rboxes[inds, 2] = edges2[inds]
|
|
|
|
rboxes[inds, 3] = edges1[inds]
|
|
|
|
rboxes[inds, 4] = np.pi / 2.0
|
|
|
|
return rboxes
|
|
|
|
|
|
|
|
|
|
|
|
def delta2rbox(rrois,
|
|
|
|
deltas,
|
|
|
|
means=[0, 0, 0, 0, 0],
|
|
|
|
stds=[1, 1, 1, 1, 1],
|
|
|
|
wh_ratio_clip=1e-6):
|
|
|
|
"""
|
|
|
|
:param rrois: (cx, cy, w, h, theta)
|
|
|
|
:param deltas: (dx, dy, dw, dh, dtheta)
|
|
|
|
:param means:
|
|
|
|
:param stds:
|
|
|
|
:param wh_ratio_clip:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
means = paddle.to_tensor(means)
|
|
|
|
stds = paddle.to_tensor(stds)
|
|
|
|
deltas = paddle.reshape(deltas, [-1, deltas.shape[-1]])
|
|
|
|
denorm_deltas = deltas * stds + means
|
|
|
|
|
|
|
|
dx = denorm_deltas[:, 0]
|
|
|
|
dy = denorm_deltas[:, 1]
|
|
|
|
dw = denorm_deltas[:, 2]
|
|
|
|
dh = denorm_deltas[:, 3]
|
|
|
|
dangle = denorm_deltas[:, 4]
|
|
|
|
|
|
|
|
max_ratio = np.abs(np.log(wh_ratio_clip))
|
|
|
|
dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
|
|
|
|
dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)
|
|
|
|
|
|
|
|
rroi_x = rrois[:, 0]
|
|
|
|
rroi_y = rrois[:, 1]
|
|
|
|
rroi_w = rrois[:, 2]
|
|
|
|
rroi_h = rrois[:, 3]
|
|
|
|
rroi_angle = rrois[:, 4]
|
|
|
|
|
|
|
|
gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
|
|
|
|
rroi_angle) + rroi_x
|
|
|
|
gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
|
|
|
|
rroi_angle) + rroi_y
|
|
|
|
gw = rroi_w * dw.exp()
|
|
|
|
gh = rroi_h * dh.exp()
|
|
|
|
ga = np.pi * dangle + rroi_angle
|
|
|
|
ga = (ga + np.pi / 4) % np.pi - np.pi / 4
|
|
|
|
ga = paddle.to_tensor(ga)
|
|
|
|
|
|
|
|
gw = paddle.to_tensor(gw, dtype='float32')
|
|
|
|
gh = paddle.to_tensor(gh, dtype='float32')
|
|
|
|
bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
|
|
|
|
return bboxes
|
|
|
|
|
|
|
|
|
|
|
|
def rbox2delta(proposals, gt, means=[0, 0, 0, 0, 0], stds=[1, 1, 1, 1, 1]):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
proposals:
|
|
|
|
gt:
|
|
|
|
means: 1x5
|
|
|
|
stds: 1x5
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
"""
|
|
|
|
proposals = proposals.astype(np.float64)
|
|
|
|
|
|
|
|
PI = np.pi
|
|
|
|
|
|
|
|
gt_widths = gt[..., 2]
|
|
|
|
gt_heights = gt[..., 3]
|
|
|
|
gt_angle = gt[..., 4]
|
|
|
|
|
|
|
|
proposals_widths = proposals[..., 2]
|
|
|
|
proposals_heights = proposals[..., 3]
|
|
|
|
proposals_angle = proposals[..., 4]
|
|
|
|
|
|
|
|
coord = gt[..., 0:2] - proposals[..., 0:2]
|
|
|
|
dx = (np.cos(proposals[..., 4]) * coord[..., 0] + np.sin(proposals[..., 4])
|
|
|
|
* coord[..., 1]) / proposals_widths
|
|
|
|
dy = (-np.sin(proposals[..., 4]) * coord[..., 0] + np.cos(proposals[..., 4])
|
|
|
|
* coord[..., 1]) / proposals_heights
|
|
|
|
dw = np.log(gt_widths / proposals_widths)
|
|
|
|
dh = np.log(gt_heights / proposals_heights)
|
|
|
|
da = (gt_angle - proposals_angle)
|
|
|
|
|
|
|
|
da = (da + PI / 4) % PI - PI / 4
|
|
|
|
da /= PI
|
|
|
|
|
|
|
|
deltas = np.stack([dx, dy, dw, dh, da], axis=-1)
|
|
|
|
means = np.array(means, dtype=deltas.dtype)
|
|
|
|
stds = np.array(stds, dtype=deltas.dtype)
|
|
|
|
deltas = (deltas - means) / stds
|
|
|
|
deltas = deltas.astype(np.float32)
|
|
|
|
return deltas
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_decode(bbox_preds,
|
|
|
|
anchors,
|
|
|
|
means=[0, 0, 0, 0, 0],
|
|
|
|
stds=[1, 1, 1, 1, 1]):
|
|
|
|
"""decode bbox from deltas
|
|
|
|
Args:
|
|
|
|
bbox_preds: [N,H,W,5]
|
|
|
|
anchors: [H*W,5]
|
|
|
|
return:
|
|
|
|
bboxes: [N,H,W,5]
|
|
|
|
"""
|
|
|
|
means = paddle.to_tensor(means)
|
|
|
|
stds = paddle.to_tensor(stds)
|
|
|
|
num_imgs, H, W, _ = bbox_preds.shape
|
|
|
|
bboxes_list = []
|
|
|
|
for img_id in range(num_imgs):
|
|
|
|
bbox_pred = bbox_preds[img_id]
|
|
|
|
# bbox_pred.shape=[5,H,W]
|
|
|
|
bbox_delta = bbox_pred
|
|
|
|
anchors = paddle.to_tensor(anchors)
|
|
|
|
bboxes = delta2rbox(
|
|
|
|
anchors, bbox_delta, means, stds, wh_ratio_clip=1e-6)
|
|
|
|
bboxes = paddle.reshape(bboxes, [H, W, 5])
|
|
|
|
bboxes_list.append(bboxes)
|
|
|
|
return paddle.stack(bboxes_list, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
def poly2rbox(polys):
|
|
|
|
"""
|
|
|
|
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
|
|
|
|
to
|
|
|
|
rotated_boxes:[x_ctr,y_ctr,w,h,angle]
|
|
|
|
"""
|
|
|
|
rotated_boxes = []
|
|
|
|
for poly in polys:
|
|
|
|
poly = np.array(poly[:8], dtype=np.float32)
|
|
|
|
|
|
|
|
pt1 = (poly[0], poly[1])
|
|
|
|
pt2 = (poly[2], poly[3])
|
|
|
|
pt3 = (poly[4], poly[5])
|
|
|
|
pt4 = (poly[6], poly[7])
|
|
|
|
|
|
|
|
edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[
|
|
|
|
1]) * (pt1[1] - pt2[1]))
|
|
|
|
edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[
|
|
|
|
1]) * (pt2[1] - pt3[1]))
|
|
|
|
|
|
|
|
width = max(edge1, edge2)
|
|
|
|
height = min(edge1, edge2)
|
|
|
|
|
|
|
|
rbox_angle = 0
|
|
|
|
if edge1 > edge2:
|
|
|
|
rbox_angle = np.arctan2(
|
|
|
|
float(pt2[1] - pt1[1]), float(pt2[0] - pt1[0]))
|
|
|
|
elif edge2 >= edge1:
|
|
|
|
rbox_angle = np.arctan2(
|
|
|
|
float(pt4[1] - pt1[1]), float(pt4[0] - pt1[0]))
|
|
|
|
|
|
|
|
def norm_angle(angle, range=[-np.pi / 4, np.pi]):
|
|
|
|
return (angle - range[0]) % range[1] + range[0]
|
|
|
|
|
|
|
|
rbox_angle = norm_angle(rbox_angle)
|
|
|
|
|
|
|
|
x_ctr = float(pt1[0] + pt3[0]) / 2
|
|
|
|
y_ctr = float(pt1[1] + pt3[1]) / 2
|
|
|
|
rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle])
|
|
|
|
rotated_boxes.append(rotated_box)
|
|
|
|
ret_rotated_boxes = np.array(rotated_boxes)
|
|
|
|
assert ret_rotated_boxes.shape[1] == 5
|
|
|
|
return ret_rotated_boxes
|
|
|
|
|
|
|
|
|
|
|
|
def cal_line_length(point1, point2):
|
|
|
|
import math
|
|
|
|
return math.sqrt(
|
|
|
|
math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2))
|
|
|
|
|
|
|
|
|
|
|
|
def get_best_begin_point_single(coordinate):
|
|
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = coordinate
|
|
|
|
xmin = min(x1, x2, x3, x4)
|
|
|
|
ymin = min(y1, y2, y3, y4)
|
|
|
|
xmax = max(x1, x2, x3, x4)
|
|
|
|
ymax = max(y1, y2, y3, y4)
|
|
|
|
combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]],
|
|
|
|
[[x4, y4], [x1, y1], [x2, y2], [x3, y3]],
|
|
|
|
[[x3, y3], [x4, y4], [x1, y1], [x2, y2]],
|
|
|
|
[[x2, y2], [x3, y3], [x4, y4], [x1, y1]]]
|
|
|
|
dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
|
|
|
|
force = 100000000.0
|
|
|
|
force_flag = 0
|
|
|
|
for i in range(4):
|
|
|
|
temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \
|
|
|
|
+ cal_line_length(combinate[i][1], dst_coordinate[1]) \
|
|
|
|
+ cal_line_length(combinate[i][2], dst_coordinate[2]) \
|
|
|
|
+ cal_line_length(combinate[i][3], dst_coordinate[3])
|
|
|
|
if temp_force < force:
|
|
|
|
force = temp_force
|
|
|
|
force_flag = i
|
|
|
|
if force_flag != 0:
|
|
|
|
pass
|
|
|
|
return np.array(combinate[force_flag]).reshape(8)
|
|
|
|
|
|
|
|
|
|
|
|
def rbox2poly_np(rrects):
|
|
|
|
"""
|
|
|
|
rrect:[x_ctr,y_ctr,w,h,angle]
|
|
|
|
to
|
|
|
|
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
|
|
|
|
"""
|
|
|
|
polys = []
|
|
|
|
for i in range(rrects.shape[0]):
|
|
|
|
rrect = rrects[i]
|
|
|
|
# x_ctr, y_ctr, width, height, angle = rrect[:5]
|
|
|
|
x_ctr = rrect[0]
|
|
|
|
y_ctr = rrect[1]
|
|
|
|
width = rrect[2]
|
|
|
|
height = rrect[3]
|
|
|
|
angle = rrect[4]
|
|
|
|
tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2
|
|
|
|
rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]])
|
|
|
|
R = np.array([[np.cos(angle), -np.sin(angle)],
|
|
|
|
[np.sin(angle), np.cos(angle)]])
|
|
|
|
poly = R.dot(rect)
|
|
|
|
x0, x1, x2, x3 = poly[0, :4] + x_ctr
|
|
|
|
y0, y1, y2, y3 = poly[1, :4] + y_ctr
|
|
|
|
poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32)
|
|
|
|
poly = get_best_begin_point_single(poly)
|
|
|
|
polys.append(poly)
|
|
|
|
polys = np.array(polys)
|
|
|
|
return polys
|
|
|
|
|
|
|
|
|
|
|
|
def rbox2poly(rrects):
|
|
|
|
"""
|
|
|
|
rrect:[x_ctr,y_ctr,w,h,angle]
|
|
|
|
to
|
|
|
|
poly:[x0,y0,x1,y1,x2,y2,x3,y3]
|
|
|
|
"""
|
|
|
|
N = paddle.shape(rrects)[0]
|
|
|
|
|
|
|
|
x_ctr = rrects[:, 0]
|
|
|
|
y_ctr = rrects[:, 1]
|
|
|
|
width = rrects[:, 2]
|
|
|
|
height = rrects[:, 3]
|
|
|
|
angle = rrects[:, 4]
|
|
|
|
|
|
|
|
tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5
|
|
|
|
|
|
|
|
normal_rects = paddle.stack(
|
|
|
|
[tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0)
|
|
|
|
normal_rects = paddle.reshape(normal_rects, [2, 4, N])
|
|
|
|
normal_rects = paddle.transpose(normal_rects, [2, 0, 1])
|
|
|
|
|
|
|
|
sin, cos = paddle.sin(angle), paddle.cos(angle)
|
|
|
|
# M.shape=[N,2,2]
|
|
|
|
M = paddle.stack([cos, -sin, sin, cos], axis=0)
|
|
|
|
M = paddle.reshape(M, [2, 2, N])
|
|
|
|
M = paddle.transpose(M, [2, 0, 1])
|
|
|
|
|
|
|
|
# polys:[N,8]
|
|
|
|
polys = paddle.matmul(M, normal_rects)
|
|
|
|
polys = paddle.transpose(polys, [2, 1, 0])
|
|
|
|
polys = paddle.reshape(polys, [-1, N])
|
|
|
|
polys = paddle.transpose(polys, [1, 0])
|
|
|
|
|
|
|
|
tmp = paddle.stack(
|
|
|
|
[x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1)
|
|
|
|
polys = polys + tmp
|
|
|
|
return polys
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16):
|
|
|
|
"""
|
|
|
|
Calculate the iou of box1 and box2 with numpy.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
box1 (ndarray): [N, 4]
|
|
|
|
box2 (ndarray): [M, 4], usually N != M
|
|
|
|
x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True
|
|
|
|
eps (float): epsilon to avoid divide by zero
|
|
|
|
Return:
|
|
|
|
iou (ndarray): iou of box1 and box2, [N, M]
|
|
|
|
"""
|
|
|
|
N, M = len(box1), len(box2) # usually N != M
|
|
|
|
if x1y1x2y2:
|
|
|
|
b1_x1, b1_y1 = box1[:, 0], box1[:, 1]
|
|
|
|
b1_x2, b1_y2 = box1[:, 2], box1[:, 3]
|
|
|
|
b2_x1, b2_y1 = box2[:, 0], box2[:, 1]
|
|
|
|
b2_x2, b2_y2 = box2[:, 2], box2[:, 3]
|
|
|
|
else:
|
|
|
|
# cxcywh style
|
|
|
|
# Transform from center and width to exact coordinates
|
|
|
|
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
|
|
|
|
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
|
|
|
|
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
|
|
|
|
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
|
|
|
|
|
|
|
|
# get the coordinates of the intersection rectangle
|
|
|
|
inter_rect_x1 = np.zeros((N, M), dtype=np.float32)
|
|
|
|
inter_rect_y1 = np.zeros((N, M), dtype=np.float32)
|
|
|
|
inter_rect_x2 = np.zeros((N, M), dtype=np.float32)
|
|
|
|
inter_rect_y2 = np.zeros((N, M), dtype=np.float32)
|
|
|
|
for i in range(len(box2)):
|
|
|
|
inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i])
|
|
|
|
inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i])
|
|
|
|
inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i])
|
|
|
|
inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i])
|
|
|
|
# Intersection area
|
|
|
|
inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum(
|
|
|
|
inter_rect_y2 - inter_rect_y1, 0)
|
|
|
|
# Union Area
|
|
|
|
b1_area = np.repeat(
|
|
|
|
((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1)
|
|
|
|
b2_area = np.repeat(
|
|
|
|
((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0)
|
|
|
|
|
|
|
|
ious = inter_area / (b1_area + b2_area - inter_area + eps)
|
|
|
|
return ious
|
|
|
|
|
|
|
|
|
|
|
|
def bbox2distance(points, bbox, max_dis=None, eps=0.1):
|
|
|
|
"""Decode bounding box based on distances.
|
|
|
|
Args:
|
|
|
|
points (Tensor): Shape (n, 2), [x, y].
|
|
|
|
bbox (Tensor): Shape (n, 4), "xyxy" format
|
|
|
|
max_dis (float): Upper bound of the distance.
|
|
|
|
eps (float): a small value to ensure target < max_dis, instead <=
|
|
|
|
Returns:
|
|
|
|
Tensor: Decoded distances.
|
|
|
|
"""
|
|
|
|
left = points[:, 0] - bbox[:, 0]
|
|
|
|
top = points[:, 1] - bbox[:, 1]
|
|
|
|
right = bbox[:, 2] - points[:, 0]
|
|
|
|
bottom = bbox[:, 3] - points[:, 1]
|
|
|
|
if max_dis is not None:
|
|
|
|
left = left.clip(min=0, max=max_dis - eps)
|
|
|
|
top = top.clip(min=0, max=max_dis - eps)
|
|
|
|
right = right.clip(min=0, max=max_dis - eps)
|
|
|
|
bottom = bottom.clip(min=0, max=max_dis - eps)
|
|
|
|
return paddle.stack([left, top, right, bottom], -1)
|
|
|
|
|
|
|
|
|
|
|
|
def distance2bbox(points, distance, max_shape=None):
|
|
|
|
"""Decode distance prediction to bounding box.
|
|
|
|
Args:
|
|
|
|
points (Tensor): Shape (n, 2), [x, y].
|
|
|
|
distance (Tensor): Distance from the given point to 4
|
|
|
|
boundaries (left, top, right, bottom).
|
|
|
|
max_shape (tuple): Shape of the image.
|
|
|
|
Returns:
|
|
|
|
Tensor: Decoded bboxes.
|
|
|
|
"""
|
|
|
|
x1 = points[:, 0] - distance[:, 0]
|
|
|
|
y1 = points[:, 1] - distance[:, 1]
|
|
|
|
x2 = points[:, 0] + distance[:, 2]
|
|
|
|
y2 = points[:, 1] + distance[:, 3]
|
|
|
|
if max_shape is not None:
|
|
|
|
x1 = x1.clip(min=0, max=max_shape[1])
|
|
|
|
y1 = y1.clip(min=0, max=max_shape[0])
|
|
|
|
x2 = x2.clip(min=0, max=max_shape[1])
|
|
|
|
y2 = y2.clip(min=0, max=max_shape[0])
|
|
|
|
return paddle.stack([x1, y1, x2, y2], -1)
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_center(boxes):
|
|
|
|
"""Get bbox centers from boxes.
|
|
|
|
Args:
|
|
|
|
boxes (Tensor): boxes with shape (N, 4), "xmin, ymin, xmax, ymax" format.
|
|
|
|
Returns:
|
|
|
|
Tensor: boxes centers with shape (N, 2), "cx, cy" format.
|
|
|
|
"""
|
|
|
|
boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2
|
|
|
|
boxes_cy = (boxes[..., 1] + boxes[..., 3]) / 2
|
|
|
|
return paddle.stack([boxes_cx, boxes_cy], axis=-1)
|
|
|
|
|
|
|
|
|
|
|
|
def batch_distance2bbox(points, distance, max_shapes=None):
|
|
|
|
"""Decode distance prediction to bounding box for batch.
|
|
|
|
Args:
|
|
|
|
points (Tensor): [B, ..., 2]
|
|
|
|
distance (Tensor): [B, ..., 4]
|
|
|
|
max_shapes (tuple): [B, 2], "h,w" format, Shape of the image.
|
|
|
|
Returns:
|
|
|
|
Tensor: Decoded bboxes.
|
|
|
|
"""
|
|
|
|
x1 = points[..., 0] - distance[..., 0]
|
|
|
|
y1 = points[..., 1] - distance[..., 1]
|
|
|
|
x2 = points[..., 0] + distance[..., 2]
|
|
|
|
y2 = points[..., 1] + distance[..., 3]
|
|
|
|
if max_shapes is not None:
|
|
|
|
for i, max_shape in enumerate(max_shapes):
|
|
|
|
x1[i] = x1[i].clip(min=0, max=max_shape[1])
|
|
|
|
y1[i] = y1[i].clip(min=0, max=max_shape[0])
|
|
|
|
x2[i] = x2[i].clip(min=0, max=max_shape[1])
|
|
|
|
y2[i] = y2[i].clip(min=0, max=max_shape[0])
|
|
|
|
return paddle.stack([x1, y1, x2, y2], -1)
|